Win_odd Dhamnekar
Junior Member
- Joined
- Aug 14, 2018
- Messages
- 207
Verify that Stoke’s theorem is true for vector field [math] F = \langle y,x,-z \rangle [/math] and surface S, where S is the upwardly oriented portion of the graph of [math] f(x,y) = x^2y [/math] over a triangle in the x-y plane (0,0), (2,0) and (0,2).
Answer:-
As a surface integral you have [math]f(x,y) = x^2y, curlF =\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x & -z \end{vmatrix}= [0,0,0] [/math]
[math]\iint\limits_S curl F \cdot dS = \iint\limits_D curl F(x,y,z) \cdot (f_x\times f_y ) dA[/math]
[math] \iint\limits_S curl F \cdot dS = \iint\limits_D [0,0,0] \cdot [-2xy,-x^2, 1] dA =0[/math]
As a line integral, you can parameterize C by [math]r (x,y,z)= (x,y, x^2y), 0\leq x \leq 2, 0\leq y \leq 2[/math]
[math]\int_C F\cdot dr = \int_0^2 \int_0^2 [y + x -(x^2y)(2xy +x^2)] dydx =-\frac{392}{15} [/math]
Where I am wrong? Would any member of this forum tell me in the reply to this thread correctly?
Answer:-
As a surface integral you have [math]f(x,y) = x^2y, curlF =\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x & -z \end{vmatrix}= [0,0,0] [/math]
[math]\iint\limits_S curl F \cdot dS = \iint\limits_D curl F(x,y,z) \cdot (f_x\times f_y ) dA[/math]
[math] \iint\limits_S curl F \cdot dS = \iint\limits_D [0,0,0] \cdot [-2xy,-x^2, 1] dA =0[/math]
As a line integral, you can parameterize C by [math]r (x,y,z)= (x,y, x^2y), 0\leq x \leq 2, 0\leq y \leq 2[/math]
[math]\int_C F\cdot dr = \int_0^2 \int_0^2 [y + x -(x^2y)(2xy +x^2)] dydx =-\frac{392}{15} [/math]
Where I am wrong? Would any member of this forum tell me in the reply to this thread correctly?