Verifying restatement of tan(x) + cot(x)

Glimited7

New member
Joined
Nov 14, 2007
Messages
3
i need help verifying.. i just wanted to make sure this is right my problem was


_______1_________ = Sinx * Cos x
Tan x + Cot x

and this workes out to be 1 = 1
_______1__________
changed tan and cot to the reciprical of __Sin_x__ +___Cos_x___ (Denominator )
cos x sin x

dont they jsut cancell out and ur left with 1 on the left side??
 
Sorry. Kind of hard with your underlining but you got this?:

\(\displaystyle \frac{1}{\frac{sinx + cosx}{cosxsinx}}\)?

Bit of a mistake there when adding the fractions in the denominator. Try adding it again:

\(\displaystyle \frac{sinx}{cosx} + \frac{cosx}{sinx}\)

\(\displaystyle = \frac{sinx}{cosx} \cdot \frac{sinx}{sinx} + \frac{cosx}{sinx} \cdot \frac{cosx}{cosx}\)

etc. etc.
 
ok so i mult. the denominator by its denominator

so do i just get cos*sin + Sin* Cos ?
 
\(\displaystyle \L \frac{1}{\tan{x} + \cot{x}} \cdot \frac{\sin{x} \cos{x}}{\sin{x} \cos{x}} = \frac{\sin{x} \cos{x}}{\sin^2{x} + \cos^2{x}} = \sin{x} \cos{x}\)
 
Top