Erik Lehnsherr
New member
- Joined
- Jun 13, 2010
- Messages
- 11
Are these correct? Did I miss anything?
\(\displaystyle \text{1.\,Prove that}\,\,\) \(\displaystyle \int_0^2 x^2 \sqrt{(x^2 + 4)}\,dx = 6\sqrt{2} - \ln(3 + 2\sqrt{2})\)
\(\displaystyle u = x^2 + 4\,\,\,\,\,\,\,\,\,u - 4 = x^2\)
\(\displaystyle = \int \frac{(u - 4)u^\frac{1}{2}}{2(u - 4)^\frac{1}{2}}\,\dot\,du\,\,\,\,\,\,\,\,\,du = 2x\,dx\)
\(\displaystyle \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{du}{dx} = dx\)
\(\displaystyle = \frac{1}{2}\int\frac{ (u - 4)^1}{u - 4^\frac{1}{2}}\,\dot\,\,u^\frac{1}{2}\)
\(\displaystyle = \frac{1}{2} \int \frac{u^\frac{3}{2} - 4u^\frac{1}{2}}{(u - 4)}\)
\(\displaystyle \text{2.\,\,Show that} \int_7^{10} \frac{7}{x^2 - 5x - 6}\,\,dx = \ln\bigg(\frac{32}{11}\bigg)\)
\(\displaystyle \int_7^{10} \frac{7}{x^2 - 5x - 6}\,\,dx = \frac{A}{(x - 6)} + \frac{B}{(x + 1)}\)
\(\displaystyle Ax + A + Bx - 6B\)
\(\displaystyle A + B = 0, A - 6b = 7\)
\(\displaystyle A = -B\,\,\,\,\,(-B) - 6B = 7\)
\(\displaystyle \therefore A = 1\,\,\,\,\,-7B = 7\,\,\,B = -1\)
\(\displaystyle \frac{1}{(x - 6)} + \frac{1}{x + 1}\)
\(\displaystyle \bigg[\ln|x - 6| - \ln|x + 1|\bigg]_7^{10} + C\)
\(\displaystyle \ln |\frac{x - 6}{x + 1}| - \ln |\frac{x - 6}{x + 1}|\)
\(\displaystyle \ln |\frac{4}{11}| - \ln |\frac{1}{8}|\)
\(\displaystyle \ln \bigg(\frac{\frac{4}{11}}{\frac{1}{8}}\bigg)\)
\(\displaystyle \ln\bigg(\frac{4}{11} \times 8\bigg) = \ln \bigg(\frac{32}{11}\bigg)\)
\(\displaystyle \text{1.\,Prove that}\,\,\) \(\displaystyle \int_0^2 x^2 \sqrt{(x^2 + 4)}\,dx = 6\sqrt{2} - \ln(3 + 2\sqrt{2})\)
\(\displaystyle u = x^2 + 4\,\,\,\,\,\,\,\,\,u - 4 = x^2\)
\(\displaystyle = \int \frac{(u - 4)u^\frac{1}{2}}{2(u - 4)^\frac{1}{2}}\,\dot\,du\,\,\,\,\,\,\,\,\,du = 2x\,dx\)
\(\displaystyle \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{du}{dx} = dx\)
\(\displaystyle = \frac{1}{2}\int\frac{ (u - 4)^1}{u - 4^\frac{1}{2}}\,\dot\,\,u^\frac{1}{2}\)
\(\displaystyle = \frac{1}{2} \int \frac{u^\frac{3}{2} - 4u^\frac{1}{2}}{(u - 4)}\)
\(\displaystyle \text{2.\,\,Show that} \int_7^{10} \frac{7}{x^2 - 5x - 6}\,\,dx = \ln\bigg(\frac{32}{11}\bigg)\)
\(\displaystyle \int_7^{10} \frac{7}{x^2 - 5x - 6}\,\,dx = \frac{A}{(x - 6)} + \frac{B}{(x + 1)}\)
\(\displaystyle Ax + A + Bx - 6B\)
\(\displaystyle A + B = 0, A - 6b = 7\)
\(\displaystyle A = -B\,\,\,\,\,(-B) - 6B = 7\)
\(\displaystyle \therefore A = 1\,\,\,\,\,-7B = 7\,\,\,B = -1\)
\(\displaystyle \frac{1}{(x - 6)} + \frac{1}{x + 1}\)
\(\displaystyle \bigg[\ln|x - 6| - \ln|x + 1|\bigg]_7^{10} + C\)
\(\displaystyle \ln |\frac{x - 6}{x + 1}| - \ln |\frac{x - 6}{x + 1}|\)
\(\displaystyle \ln |\frac{4}{11}| - \ln |\frac{1}{8}|\)
\(\displaystyle \ln \bigg(\frac{\frac{4}{11}}{\frac{1}{8}}\bigg)\)
\(\displaystyle \ln\bigg(\frac{4}{11} \times 8\bigg) = \ln \bigg(\frac{32}{11}\bigg)\)