velocity vector: y=x^3, with x=t, y=t^3 at point t=1

mattflint50

Junior Member
Joined
Apr 25, 2005
Messages
60
Im trying to figure out a Velocity Vector problem on the Calc BC exam, but I have never seen it expressed like this. Can you please help.

The velocity vectore of a particle moving along the curve y=x^3 accordign to x=t and y=t^3 at the point t=1.

Can you please help me.
 
Re: velocity vector

Hello, mattflint50!

The velocity vector of a particle moving along the curve y=x3\displaystyle y\,=\,x^3
according to: x=t\displaystyle x\,=\,t and y=t3\displaystyle y\,=\,t^3 at the point t=1\displaystyle t\,=\,1
We have: dxdt=1\displaystyle \text{We have: }\,\frac{dx}{dt}\,=\,1 and dydt=3t2\displaystyle \,\frac{dy}{dt}\,=\,3t^2

At t=1:  dxdt=1,  dydt=3\displaystyle \text{At }t\,=\,1:\;\frac{dx}{dt}\,=\,1,\;\frac{dy}{dt}\,=\,3

Code:
            B 
           *
          / :
        v/  : 3
        /   :
       /θ   :
      * - - *
     A   1

The velocity vector is: v=AB=rcosθ,  rsinθ\displaystyle \text{The velocity vector is: }\,\vec{v}\:=\:\vec{AB} \:= \:\langle r\cdot\cos\theta,\;r\cdot\sin\theta\rangle

where: r=v=12+32=10\displaystyle \text{where: }\,r\:=\:|\vec{v}|\:=\:\sqrt{1^2\,+\,3^2}\:=\:\sqrt{10}

    and: θ=arctan(3)  1.25 radians.\displaystyle \;\;\text{and: }\,\theta\:=\:\arctan(3)\:\approx\;1.25 \text{ radians.}
 
Top