Vectors: demonstrate whether points are collinear

K_Swiss

New member
Joined
Feb 8, 2008
Messages
28
Can you please check whether my answers are correct? If they aren't, how would you find if the points are parallel to one another with 3 coordinates?

Using vectors, demonstrate that these points are collinear.

a) P(15 , 10)
Q(6 , 4)
R(-12 , -8)

Vector PQ = (-9 , -6)
Vector QR = (-18 , -12)
Vector RP = (27 , -18)

(-9 / 27 / -18) = (-6 / -18 / -12)

Therefore, not collinear.

b)
D(33, -5, 20)
E(6, 4, -16)
F(9, 3, -12)

Vector DE = (-27, 9, -36)
Vector EF = (3, -1, 4)
Vector FD = (24, -8, 32)

(-27 / 3 / 24) = (9 / - 1 / -8) = (-36 / 4 / 32)
 
Hello, K_Swiss!

Two vectors are parallel if one is a multiple of the other.


Using vectors, demonstrate that these points are collinear.

\(\displaystyle a)\;P(15 , 10)\quad Q(6 , 4) \quad R(-12 , -8)\)

\(\displaystyle \overrightarrow{PQ} \;=\;\langle -9,-6\rangle \;=\;-3\,\langle3,2\rangle\)

\(\displaystyle \overrightarrow{QR} \;=\;\langle-18,-27\rangle \;=\;-6\,\langle3,2\rangle\)

\(\displaystyle \text{Hence: }\:\overrightarrow{PQ} \parallel \overrightarrow{QR}\)


\(\displaystyle \text{Since }\overrightarrow{PQ}\text{ and }\overrightarrow{QR}\text{ share point }Q\!:\;P,Q,R\text{ are collinear.}\)



\(\displaystyle b)\;\;D(33, -5, 20)\quad E(6, 4, -16) \quad F(9, 3, -12)\)

\(\displaystyle \overrightarrow{DE} \;=\;\langle -27,9,-36\rangle \;=\;-9\,\langle 3,-1,4\rangle\)

\(\displaystyle \overrightarrow{EF} \;=\;\langle 3,-1,4\rangle\)

\(\displaystyle \text{Hence: }\:\overrightarrow{DE} \parallel \overrightarrow{EF}\)

\(\displaystyle \text{Since }\overrightarrow{DE}\text{ and }\overrightarrow{EF}\text{ share point }E\!:\;D,E,F\text{ are collinear.}\)

 
Top