thepillow
New member
- Joined
- Sep 12, 2012
- Messages
- 34
After solving a system of linear equations I have the following vector-parametric representation of the 2-dimensional solution space:
\[F:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+t_{2}\begin{bmatrix}
0\\
0\\
0\\
0\\
1
\end{bmatrix} : t_{1}, t_{2}\in \mathbb{R}\]
Then we're asked to find a 3-dimensional linear surface, call it H, that intersects our 2-dimensional surface, F, in exactly a line.
Below is my attempt, and I was hoping for some feedback on whether my answer and methodology are correct:
I think that a 3-dimensional linear surface, H, that intersects F in exactly a line can be represented as
\[H:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+\lambda_{1}\overrightarrow{\mathbf{v_{1}}}+\lambda_{2}\overrightarrow{\mathbf{v_{2}}}\]
where the lambdas are parameters and the vectors v1 and v2 are two vectors not in F.
If this is correct then a possible H could be:
\[H:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+\lambda_{1}\begin{bmatrix}
1\\
0\\
-1\\
0\\
0
\end{bmatrix}+\lambda_{2}\begin{bmatrix}
1\\
1\\
0\\
0\\
0
\end{bmatrix} : t_{1},\lambda_{1},\lambda_{2}\in \mathbb{R}\]
because the two vectors\[\begin{bmatrix}1\\
0\\
-1\\
0\\
0
\end{bmatrix}, \begin{bmatrix}
1\\
1\\
0\\
0\\
0
\end{bmatrix}\]
are normal to both of the vectors in F associated with parameters.
Would this H indeed represent a 3-dimensional linear surface that intersects F in exactly a line?
Thanks in advance for your help and insights!
\[F:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+t_{2}\begin{bmatrix}
0\\
0\\
0\\
0\\
1
\end{bmatrix} : t_{1}, t_{2}\in \mathbb{R}\]
Then we're asked to find a 3-dimensional linear surface, call it H, that intersects our 2-dimensional surface, F, in exactly a line.
Below is my attempt, and I was hoping for some feedback on whether my answer and methodology are correct:
I think that a 3-dimensional linear surface, H, that intersects F in exactly a line can be represented as
\[H:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+\lambda_{1}\overrightarrow{\mathbf{v_{1}}}+\lambda_{2}\overrightarrow{\mathbf{v_{2}}}\]
where the lambdas are parameters and the vectors v1 and v2 are two vectors not in F.
If this is correct then a possible H could be:
\[H:\begin{bmatrix}
v\\
w\\
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
2\\
0\\
2\\
0\\
0
\end{bmatrix}+t_{1}\begin{bmatrix}
-1\\
1\\
-1\\
1\\
0
\end{bmatrix}+\lambda_{1}\begin{bmatrix}
1\\
0\\
-1\\
0\\
0
\end{bmatrix}+\lambda_{2}\begin{bmatrix}
1\\
1\\
0\\
0\\
0
\end{bmatrix} : t_{1},\lambda_{1},\lambda_{2}\in \mathbb{R}\]
because the two vectors\[\begin{bmatrix}1\\
0\\
-1\\
0\\
0
\end{bmatrix}, \begin{bmatrix}
1\\
1\\
0\\
0\\
0
\end{bmatrix}\]
are normal to both of the vectors in F associated with parameters.
Would this H indeed represent a 3-dimensional linear surface that intersects F in exactly a line?
Thanks in advance for your help and insights!