Hello, FaLaLollipop!
I'll assume you know
some vector formulas . . .
Find the distance from a given point to a given line.
Code:
C
*
/ :
b/ :
/ :d
/ :
* - - - - + - - *
A c B
The given line is vector \(\displaystyle \overline{AB}\,=\,\overline c\)
The given point is \(\displaystyle C\).
Let \(\displaystyle \overline{AC}\,=\,\overline b\)
The projection of \(\displaystyle \overline{AC}\) onto \(\displaystyle \overline{AB}\) is: \(\displaystyle \:\overline v \:= \
roj_cb\:=\:\left(\frac{\overline b\,\cdot\,\overline c}{|\overline c|^2}\right) \overline c\)
Then: \(\displaystyle \:\overline d\:= \:\overline b\,-\,\overline v\)
Hence: \(\displaystyle \:d \;=\:|\overline d|\)
Given three points, find the area of the triangle.
Code:
C
*
/ \
b/ \
/ \
/ θ \
*--------------*
A c B
From the previous problem, we know how to find \(\displaystyle d\), the height of the triangle.
\(\displaystyle \;\;\)Then: \(\displaystyle \,A\:=\:\frac{1}{2}\cdot(\text{base})\cdot(\text{height})\)
Another method:
The area of a triangle is: \(\displaystyle \:A\;= \;\frac{1}{2}\cdot b\cdot c\cdot\sin\theta\)
\(\displaystyle \;\;\)(one-half the product of two sides and the sine of the included angle)
We can find: \(\displaystyle \,b\,=\,|\overline b|,\;c\,=\,|\overline c|\)
And we can find \(\displaystyle \sin\theta\) with: \(\displaystyle \:\cos\theta \:= \:\frac{\overline b\,\cdot \overline c}{|\overline b||\overline c|}\)