Can someone check my work here? The general solution I came up seems to be a much more complex than all the examples the instructor has give us so I am thinking I may have made a mistake somewhere along the line.
y'' - 4y' + 4y = (x + 1)e^2x
m2 - 4m + 4 = 0
m = 2 m = 2
yc(x) = c1e^(2x) + c2xe^(2x)
yp(x) = V1(x)e^(2x) + V2(x)xe^(2x)
y'p(x) = 2V1(x)e^(2x) + 2V2(x)e^(2x) + V1'(x)e^(2x) + V2'(x)xe^(2x)
V1'(x)e^(2x) + V2'(x)xe^(2x) = 0
yp'(x) = 2V1(x)e^(2x) + 2V2(x)e^(2x)
y''p(x) = 4V1(x)e^(2x) + 4V2(x)e^(2x) + 2V1'(x)e^(2x) + 2V2'(x)e^(2x)
substitute that back in and end up with
2V1'(x)e^(2x) + 2V2'(x)e^(2x) = (x+1)e^(2x)
V1'(x)e^(2x) + V2'(x)xe^(2x) = 0
2V1'(x)e^(2x) + 2V2'(x)e^(2x) = (x + 1)e^(2x)
Do the determinants
V1'(x) =
|--------0----------xe^(2x)----|
|---(x+1)e^(2x)---2e^(2x)---|
---------------------------------------
|-----e^(2x)--------xe^(2x)---|
|-----2e^(2x)--------2e^(2x)--|
= -(x^2 + x)/(2-2x)
and
V2'(x) =
|-----e^(2x)------------0------------|
|-----2e^(2x)-----(x + 1)e^(2x)---|
---------------------------------------------
|-----e^(2x)--------------xe^(2x)---|
|-----2e^(2x)--------------2e^(2x)--|
= (x)/(2 - 2x)
Integrate, V1 = (x^2)/4 + X + ln(x + 1)
V2 = 1/2(-x - ln(2-2x) + 1)
yp(x) = ((x^2)/4 + x + ln(x-1))e^(2x) + (1/2(-x -ln(2-2x)+ 1)xe^(2x))
General Solution
y=c1e^(2x)+c2xe^(2x)+((x^2)/4+x+ln(x-1))e^(2x)+(1/2(-x-ln(2-2x)+1)xe^(2x))
Thanks for looking!
y'' - 4y' + 4y = (x + 1)e^2x
m2 - 4m + 4 = 0
m = 2 m = 2
yc(x) = c1e^(2x) + c2xe^(2x)
yp(x) = V1(x)e^(2x) + V2(x)xe^(2x)
y'p(x) = 2V1(x)e^(2x) + 2V2(x)e^(2x) + V1'(x)e^(2x) + V2'(x)xe^(2x)
V1'(x)e^(2x) + V2'(x)xe^(2x) = 0
yp'(x) = 2V1(x)e^(2x) + 2V2(x)e^(2x)
y''p(x) = 4V1(x)e^(2x) + 4V2(x)e^(2x) + 2V1'(x)e^(2x) + 2V2'(x)e^(2x)
substitute that back in and end up with
2V1'(x)e^(2x) + 2V2'(x)e^(2x) = (x+1)e^(2x)
V1'(x)e^(2x) + V2'(x)xe^(2x) = 0
2V1'(x)e^(2x) + 2V2'(x)e^(2x) = (x + 1)e^(2x)
Do the determinants
V1'(x) =
|--------0----------xe^(2x)----|
|---(x+1)e^(2x)---2e^(2x)---|
---------------------------------------
|-----e^(2x)--------xe^(2x)---|
|-----2e^(2x)--------2e^(2x)--|
= -(x^2 + x)/(2-2x)
and
V2'(x) =
|-----e^(2x)------------0------------|
|-----2e^(2x)-----(x + 1)e^(2x)---|
---------------------------------------------
|-----e^(2x)--------------xe^(2x)---|
|-----2e^(2x)--------------2e^(2x)--|
= (x)/(2 - 2x)
Integrate, V1 = (x^2)/4 + X + ln(x + 1)
V2 = 1/2(-x - ln(2-2x) + 1)
yp(x) = ((x^2)/4 + x + ln(x-1))e^(2x) + (1/2(-x -ln(2-2x)+ 1)xe^(2x))
General Solution
y=c1e^(2x)+c2xe^(2x)+((x^2)/4+x+ln(x-1))e^(2x)+(1/2(-x-ln(2-2x)+1)xe^(2x))
Thanks for looking!