Using Vieta's formula on a polynomial equation

Aion

Junior Member
Joined
May 8, 2018
Messages
201
Let x1,x2,x3,x4x_1,x_2,x_3,x_4 be roots to the equation x4+x32x4=0x^4+x^3-2x-4=0. Determine the equation with roots x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2.

My attempt:

Expanding the product
(xx1)(xx2)(xx3)(xx4)=x4(i=14xi)x3+(1i<j4xixj)x2(1i<j<u4xixjxu)x+x1x2x3x4(x-x_1)(x-x_2)(x-x_3)(x-x_4)=x^4-\left(\sum_{i=1}^4x_i\right)x^3+\left(\sum_{1 \leq i < j \leq 4} x_i x_j\right)x^2 -\left(\sum_{1 \leq i < j < u \leq 4} x_i x_j x_u\right)x+x_1x_2x_3x_4
By comparing with x4+x32x4=0x^4+x^3-2x-4=0 we see that

x1+x2+x3+x4=1x_1+x_2+x_3+x_4=-1x1x2+x1x3+x1x4+x2x3+x2x4+x3x4=0x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=0x1x2x3+x1x2x4+x1x3x4+x2x3x4=2x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=2x1x2x3x4=4x_1x_2x_3x_4=4
We aim to find the polynomial whose roots are x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2. Let's write it as

x4a1x3+a2x2a3x+a4x^4-a_1x^3+a_2x^2-a_3x+a_4
Now notice that
a1=x12+x22+x32+x42=(x1+x2+x3+x4)22(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)=(1)22(0)=1a_1=x_1^2+x_2^2+x_3^2+x_4^2=(x_1+x_2+x_3+x_4)^2-2\left(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4 \right)=(-1)^2-2(0)=1a2=x12x22+x12x32+x12x42+x22x32+x22x42+x32x42=(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)22(x1x2x3+x1x2x3+x1x3x4+x2x3x4)=4a_2=x_1^2x_2^2+x_1^2x_3^2+x_1^2x_4^2+x_2^2x_3^2+x_2^2x_4^2+x_3^2x_4^2=\left(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4 \right)^2-2\left(x_1x_2x_3+x_1x_2x_3+x_1x_3x_4+x_2x_3x_4 \right)=-4a3=x12x22x32+x12x22x42+x12x32x42+x22x32x42=(x1x2x3+x1x2x4+x1x3x4+x2x3x4)22(x1x2x3x4(x1+x2+x3+x4))=12a_3=x_1^2x_2^2x_3^2+x_1^2x_2^2x_4^2+x_1^2x_3^2x_4^2+x_2^2x_3^2x_4^2=\left(x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4 \right)^2-2\left(x_1x_2x_3x_4(x_1+x_2+x_3+x_4) \right)=12a4=(x1x2x3x4)2=42=16a_4=\left(x_1x_2x_3x_4\right)^2=4^2=16
Hence the equation with roots x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2 is
x4x34x212x+16=0x^4-x^3-4x^2-12x+16=0
Is this solution correct? It took me a while to verify the identities, and I’m wondering if there’s a simpler way to solve this problem.
 
Last edited:
Let x1,x2,x3,x4x_1,x_2,x_3,x_4 be roots to the equation x4+x32x4=0x^4+x^3-2x-4=0. Determine the equation with roots x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2.

My attempt:

Expanding the product
(xx1)(xx2)(xx3)(xx4)=x4(i=14xi)x3+(1i<j4xixj)x2(1i<j<u4xixjxu)x+x1x2x3x4(x-x_1)(x-x_2)(x-x_3)(x-x_4)=x^4-\left(\sum_{i=1}^4x_i\right)x^3+\left(\sum_{1 \leq i < j \leq 4} x_i x_j\right)x^2 -\left(\sum_{1 \leq i < j < u \leq 4} x_i x_j x_u\right)x+x_1x_2x_3x_4
By comparing with x4+x32x4=0x^4+x^3-2x-4=0 we see that

x1+x2+x3+x4=1x_1+x_2+x_3+x_4=-1x1x2+x1x3+x1x4+x2x3+x2x4+x3x4=0x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=0x1x2x3+x1x2x4+x1x3x4+x2x3x4=2x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=2x1x2x3x4=4x_1x_2x_3x_4=4
We aim to find the polynomial whose roots are x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2. Let's write it as

x4a1x3+a2x2a3x+a4x^4-a_1x^3+a_2x^2-a_3x+a_4
Now notice that
a1=x12+x22+x32+x42=(x1+x2+x3+x4)22(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)=(1)22(0)=1a_1=x_1^2+x_2^2+x_3^2+x_4^2=(x_1+x_2+x_3+x_4)^2-2\left(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4 \right)=(-1)^2-2(0)=1a2=x12x22+x12x32+x12x42+x22x32+x22x42+x32x42=(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)22(x1x2x3+x1x2x3+x1x3x4+x2x3x4)=4a_2=x_1^2x_2^2+x_1^2x_3^2+x_1^2x_4^2+x_2^2x_3^2+x_2^2x_4^2+x_3^2x_4^2=\left(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4 \right)^2-2\left(x_1x_2x_3+x_1x_2x_3+x_1x_3x_4+x_2x_3x_4 \right)=-4a3=x12x22x32+x12x22x42+x12x32x42+x22x32x42=(x1x2x3+x1x2x4+x1x3x4+x2x3x4)22(x1x2x3x4(x1+x2+x3+x4))=12a_3=x_1^2x_2^2x_3^2+x_1^2x_2^2x_4^2+x_1^2x_3^2x_4^2+x_2^2x_3^2x_4^2=\left(x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4 \right)^2-2\left(x_1x_2x_3x_4(x_1+x_2+x_3+x_4) \right)=12a4=(x1x2x3x4)2=42=16a_4=\left(x_1x_2x_3x_4\right)^2=4^2=16
Hence the equation with roots x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2 is
x4x34x212x+16=0x^4-x^3-4x^2-12x+16=0
Is this solution correct? It took me a while to verify the identities, and I’m wondering if there’s a simpler way to solve this problem.
I made a mistake, x1x2x3x4=4x_1x_2x_3x_4=-4 however it doesn't affect the solution.
 
I get a different coefficient at 'x'.

I find another approach slightly easier. Hint: (xxk)(x+xk)=x2xk2(x-x_k)(x+x_k) = x^2 - x_k^2.
 
I get a different coefficient at 'x'.

I find another approach slightly easier. Hint: (xxk)(x+xk)=x2xk2(x-x_k)(x+x_k) = x^2 - x_k^2.
Are you suggesting that we multiply the polynomial P(x)P(x) and P(x)P(-x), the roots of the resulting polynomial will be xk2x_k^2?
 
Last edited:
Are you suggesting that we multiply the polynomial P(x)P(x) and P(x)P(-x), the roots of the resulting polynomial will be xk2x_k^2?
P(x)P(x)=(xx1)(xx2)(xx3)(xx4)(xx1)(xx2)(xx3)(xx4)P(x)\cdot P(-x)=(x-x_1)(x-x_2)(x-x_3)(x-x_4)(-x-x_1)(-x-x_2)(-x-x_3)(-x-x_4)Using the identity (xxk)(xxk)=(x2xk2)(x-x_k)(-x-x_k)=-(x^2-x_k^2). Then the product becomes

P(x)P(x)=(x2x12)(x2x22)(x2x32)(x2x42)P(x)\cdot P(-x)=(x^2-x_1^2)(x^2-x_2^2)(x^2-x_3^2)(x^2-x_4^2)
And it has roots ±x12,±x22,±x32±x42\pm \sqrt{x_1^2},\pm \sqrt{x_2^2},\pm \sqrt{x_3^2}\pm \sqrt{x_4^2}. And we have

P(x)P(x)=(x4+x32x4)(x4x3+2x4)=x8x64x44x2+16P(x)\cdot P(-x)=(x^4+x^3-2x-4)(x^4-x^3+2x-4)=x^8-x^6-4x^4-4x^2+16
If we let y=x2y=x^2, then the polynomial will have roots x12,x22,x32,x42x_1^2,x_2^2,x_3^2,x_4^2

(yx12)(yx22)(yx32)(yx42)=0(y-x_1^2)(y-x_2^2)(y-x_3^2)(y-x_4^2)=0And the polynomial simplifies into
y4y34y24y+16=0y^4-y^3-4y^2-4y+16=0
 
Top