Use the 20 sequences below to derive general formulae for t4 through to t12 for any other sequence in the same pattern given t1, t2 and t3

timothyjohnson

New member
Joined
Oct 11, 2022
Messages
7
tn is defined as: 0 > tn ≤ 2048

t1t2t3t4t5t6t7t8t9t10t11t12
Sequence 1
1188
861
1608
205
788
370
2040
1907
411
143
276
328
Sequence 2
302
1667
615
238
51
510
2044
40
205
293
533
1337
Sequence 3
197
1725
1866
1158
1536
1905
723
1336
412
1554
1463
924
Sequence 4
101
352
262
1683
22
644
346
1843
1838
577
1946
1635
Sequence 5
424
1586
1210
1469
563
610
1424
69
173
638
574
1217
Sequence 6
1263
1030
688
748
2005
1554
430
175
417
510
1747
1482
Sequence 7
1979
156
1338
1004
1433
672
555
1451
1703
452
1171
815
Sequence 8
1179
98
1279
601
1224
446
905
549
1972
651
1161
1261
Sequence 9
1157
1326
1655
380
529
1477
537
932
509
1511
1785
893
Sequence 10
1160
1152
813
1064
1171
48
1894
322
1926
1074
1857
755
Sequence 11
1130
1746
1009
1609
752
6
713
1277
1253
479
1006
308
Sequence 12
116
1647
1944
1156
2016
2028
853
1561
1967
760
1040
1712
Sequence 13
208
699
942
1171
360
1701
327
856
330
14
1844
686
Sequence 14
886
8
1928
748
1128
246
286
502
172
1825
1083
708
Sequence 15
1719
2005
419
1613
1095
1926
828
227
1757
1485
782
1488
Sequence 16
1482
1305
1068
893
1018
1732
1328
1246
1305
617
1178
1654
Sequence 17
1529
363
786
624
1476
1242
547
1453
41
56
1285
1633
Sequence 18
1832
892
541
972
1208
1287
1208
1825
1144
1213
704
1231
Sequence 19
1772
1434
1208
1829
556
1047
1205
173
1225
391
503
1209
Sequence 20
1273
376
1431
1545
36
1869
1255
386
865
472
154
36
 

Attachments

  • Sequence Question.pdf
    148.5 KB · Views: 6
tn is defined as: 0 > tn ≤ 2048

t1t2t3t4t5t6t7t8t9t10t11t12
Sequence 1
1188
861
1608
205
788
370
2040
1907
411
143
276
328
Sequence 2
302
1667
615
238
51
510
2044
40
205
293
533
1337
Sequence 3
197
1725
1866
1158
1536
1905
723
1336
412
1554
1463
924
Sequence 4
101
352
262
1683
22
644
346
1843
1838
577
1946
1635
Sequence 5
424
1586
1210
1469
563
610
1424
69
173
638
574
1217
Sequence 6
1263
1030
688
748
2005
1554
430
175
417
510
1747
1482
Sequence 7
1979
156
1338
1004
1433
672
555
1451
1703
452
1171
815
Sequence 8
1179
98
1279
601
1224
446
905
549
1972
651
1161
1261
Sequence 9
1157
1326
1655
380
529
1477
537
932
509
1511
1785
893
Sequence 10
1160
1152
813
1064
1171
48
1894
322
1926
1074
1857
755
Sequence 11
1130
1746
1009
1609
752
6
713
1277
1253
479
1006
308
Sequence 12
116
1647
1944
1156
2016
2028
853
1561
1967
760
1040
1712
Sequence 13
208
699
942
1171
360
1701
327
856
330
14
1844
686
Sequence 14
886
8
1928
748
1128
246
286
502
172
1825
1083
708
Sequence 15
1719
2005
419
1613
1095
1926
828
227
1757
1485
782
1488
Sequence 16
1482
1305
1068
893
1018
1732
1328
1246
1305
617
1178
1654
Sequence 17
1529
363
786
624
1476
1242
547
1453
41
56
1285
1633
Sequence 18
1832
892
541
972
1208
1287
1208
1825
1144
1213
704
1231
Sequence 19
1772
1434
1208
1829
556
1047
1205
173
1225
391
503
1209
Sequence 20
1273
376
1431
1545
36
1869
1255
386
865
472
154
36
It would help to know what you've been doing with sequences. Are you looking at arithmetic and geometric sequences? Other types?

-Dan
 
tn is defined as: 0 > tn ≤ 2048
This means that 0>tn (so tn<0, ie tn is negative) AND tn ≤ 2048.
Combining yields that tn<0.
Is that what you want?
 
Any chance you could post those 240 values as plain text or a CSV file?
Thank you.
Never mind, I've extracted it from your PDF. Here it is in case someone wants it too:

1188 861 1608 205 788 370 2040 1907 411 143 276 328 302 1667 615 238 51 510 2044 40
205 293 533 1337 197 1725 1866 1158 1536 1905 723 1336 412 1554 1463 924 101 352 262 1683
22 644 346 1843 1838 577 1946 1635 424 1586 1210 1469 563 610 1424 69 173 638 574 1217
1263 1030 688 748 2005 1554 430 175 417 510 1747 1482 1979 156 1338 1004 1433 672 555 1451
1703 452 1171 815 1179 98 1279 601 1224 446 905 549 1972 651 1161 1261 1157 1326 1655 380
529 1477 537 932 509 1511 1785 893 1160 1152 813 1064 1171 48 1894 322 1926 1074 1857 755
1130 1746 1009 1609 752 6 713 1277 1253 479 1006 308 116 1647 1944 1156 2016 2028 853 1561
1967 760 1040 1712 208 699 942 1171 360 1701 327 856 330 14 1844 686 886 8 1928 748
1128 246 286 502 172 1825 1083 708 1719 2005 419 1613 1095 1926 828 227 1757 1485 782 1488
1482 1305 1068 893 1018 1732 1328 1246 1305 617 1178 1654 1529 363 786 624 1476 1242 547 1453
41 56 1285 1633 1832 892 541 972 1208 1287 1208 1825 1144 1213 704 1231 1772 1434 1208 1829
556 1047 1205 173 1225 391 503 1209 1273 376 1431 1545 36 1869 1255 386 865 472 154 36
 
tn is defined as: 0 > tn ≤ 2048
This means that 0>tn (so tn<0, ie tn is negative) AND tn ≤ 2048.
Combining yields that tn<0.
Is that what you want?
Hi, thanks for the reply sir. I meant tn is positive values less than or equal to 2048.
 
Never mind, I've extracted it from your PDF. Here it is in case someone wants it too:

1188 861 1608 205 788 370 2040 1907 411 143 276 328 302 1667 615 238 51 510 2044 40
205 293 533 1337 197 1725 1866 1158 1536 1905 723 1336 412 1554 1463 924 101 352 262 1683
22 644 346 1843 1838 577 1946 1635 424 1586 1210 1469 563 610 1424 69 173 638 574 1217
1263 1030 688 748 2005 1554 430 175 417 510 1747 1482 1979 156 1338 1004 1433 672 555 1451
1703 452 1171 815 1179 98 1279 601 1224 446 905 549 1972 651 1161 1261 1157 1326 1655 380
529 1477 537 932 509 1511 1785 893 1160 1152 813 1064 1171 48 1894 322 1926 1074 1857 755
1130 1746 1009 1609 752 6 713 1277 1253 479 1006 308 116 1647 1944 1156 2016 2028 853 1561
1967 760 1040 1712 208 699 942 1171 360 1701 327 856 330 14 1844 686 886 8 1928 748
1128 246 286 502 172 1825 1083 708 1719 2005 419 1613 1095 1926 828 227 1757 1485 782 1488
1482 1305 1068 893 1018 1732 1328 1246 1305 617 1178 1654 1529 363 786 624 1476 1242 547 1453
41 56 1285 1633 1832 892 541 972 1208 1287 1208 1825 1144 1213 704 1231 1772 1434 1208 1829
556 1047 1205 173 1225 391 503 1209 1273 376 1431 1545 36 1869 1255 386 865 472 154 36
Thanks for the reply and thanks for the effort too. Every reply gets me closer to the answer.
 
It would help to know what you've been doing with sequences. Are you looking at arithmetic and geometric sequences? Other types?

-Dan
I tried using the formula for AP, GP and even Fibonacci but they didn't work but I did notice a lot of patterns that indicate the tn is derived from a combination of the previous value, n and maybe another external value. For instance in Sequence 20: t12 and t5 are both 36 and are preceded by similar values 154.. This might indicate a relationship between the formular for both t5 and t12 have just slight differences. This kind of pattenr can be seen all over the sequences but I don't know of a formula that can help to derive this. Every reply stirs me in the right direction. Thanks a lot for the help.
 
Observations

Observation 1:

It seemed to me as if for each sequence to be distinct, 2 values x & y were introduced such that:

For Sequence 1, x = 1 and y =210 to give the formulae:

t2 = (2048 – t1) + x

t3 = (2048 + t2) + 2*y – x

t4 = y - 5

t5 = (2048 – t4) - 5*y

t6 = (2048 – t5) - (4*y + 46)

t7 = y*x + 145

t8 = (2048 + t7) + 9*y

t9 = 2*y + 11

t10 = (2048 – t9) - (7*y + 17)

t11 = (2048 – t10) - (8*y - 59)

t12 = t1 - t2 + x

However, these are only true for Sequence 1.



Observation 2:

Observation for sequence 1​
n
2048
Tn-1
Value
T
Multiples of 211
Multiples of 211
Remainder
1
1188
2
2048
-
1188
+
1
=
861
0
n - 2
1
3
2048
-
861
+
421
=
1608
2
n - 1
-1
4
2048
-
1608
+
-235
=
205
-1
n - 5
187
5
2048
-
205
+
-1055
=
788
-5
n - 10
0
6
2048
-
788
+
-890
=
370
-4
n - 10
165
7
2048
-
370
+
362
=
2040
1
n - 6
151
8
2048
-
2040
+
1899
=
1907
9
n + 1
0
9
2048
-
1907
+
270
=
411
1
n - 8
59
10
2048
-
411
+
-1494
=
143
-7
n - 17
194
11
2048
-
143
+
-1629
=
276
-7
n - 18
59
12
2048
-
276
+
-1444
=
328
-6
n - 18
33


Other notable observations:

1. Sequence 20: t12 and t5 are both 36 and are preceded by similar values 154.. This might indicate a
It would help to know what you've been doing with sequences. Are you looking at arithmetic and geometric sequences? Other types?

-Dan

relationship between the formula for both t5 and t12 have just slight differences.
 
It seemed to me as if for each sequence to be distinct, 2 values x & y were introduced such that:
If I understood correctly the text of the attachment then t1,t2,t3 can be chosen arbitrarily and the rest (t4,...,t12) can be derived from them. This would mean that your 'x' and 'y' would have to be derived from t1,t2 and t3.

All I can see at this point is that the dependencies are not linear because the rank the whole matrix is 12, but for t4,...t12 to be linearly dependent with t1,t2,t3 the rank would have to be 3.

Can you give us some background here? I.e. where does this problem come from? If it is a part of your homework then what topic is it related to?
 
Hi everyone. Thanks for your comments and support. I was able to find a websites online that hosts sequences. In it, I found a specific one that's related to the first sequence: https://oeis.org/A075232. I found out that most of the values in my first sequence, have n added to them and are listed there. The issue now is, I don't know what "Numbers k such that k^9 is an interprime = average of two successive primes." really means. Any help will be greatly appreciated.
 
Top