Prove that the formula for motional emf
[imath]\displaystyle\epsilon=\oint(\vec{v}\times\vec{B})\cdot d\vec{l}[/imath]
reduces to Faraday's law
[imath]\displaystyle\epsilon=-\frac{d\Phi_B}{dt}[/imath]
if [imath]\vec{B}[/imath] does not vary with time.
My attempt:
[imath]\displaystyle\Phi_B=\iint\vec{B}\cdot d\vec{A}[/imath]
We need to prove that [imath]\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=-\frac{d}{dt}\iint\vec{B}\cdot d\vec{A}[/imath]
We start with the left-hand side.
[imath]\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=\iint\left(\vec{\nabla}\times(\vec{v}\times\vec{B})\right)\cdot d\vec{A}[/imath] (Using Stokes' theorem)
But I don't know how to find [imath]\displaystyle\vec{\nabla}\times(\vec{v}\times\vec{B})[/imath]. Can someone nudge me in the right direction?
[imath]\displaystyle\epsilon=\oint(\vec{v}\times\vec{B})\cdot d\vec{l}[/imath]
reduces to Faraday's law
[imath]\displaystyle\epsilon=-\frac{d\Phi_B}{dt}[/imath]
if [imath]\vec{B}[/imath] does not vary with time.
My attempt:
[imath]\displaystyle\Phi_B=\iint\vec{B}\cdot d\vec{A}[/imath]
We need to prove that [imath]\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=-\frac{d}{dt}\iint\vec{B}\cdot d\vec{A}[/imath]
We start with the left-hand side.
[imath]\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=\iint\left(\vec{\nabla}\times(\vec{v}\times\vec{B})\right)\cdot d\vec{A}[/imath] (Using Stokes' theorem)
But I don't know how to find [imath]\displaystyle\vec{\nabla}\times(\vec{v}\times\vec{B})[/imath]. Can someone nudge me in the right direction?
Last edited: