Use Stokes' theorem (physics): Prove formula for motional emf reduces to Faraday's law if...

Meow12

New member
Joined
Nov 5, 2023
Messages
6
Prove that the formula for motional emf

ϵ=(v×B)dl\displaystyle\epsilon=\oint(\vec{v}\times\vec{B})\cdot d\vec{l}

reduces to Faraday's law

ϵ=dΦBdt\displaystyle\epsilon=-\frac{d\Phi_B}{dt}

if B\vec{B} does not vary with time.

My attempt:

ΦB=BdA\displaystyle\Phi_B=\iint\vec{B}\cdot d\vec{A}

We need to prove that (v×B)dl=ddtBdA\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=-\frac{d}{dt}\iint\vec{B}\cdot d\vec{A}

We start with the left-hand side.

(v×B)dl=(×(v×B))dA\displaystyle\oint(\vec{v}\times\vec{B})\cdot d\vec{l}=\iint\left(\vec{\nabla}\times(\vec{v}\times\vec{B})\right)\cdot d\vec{A} (Using Stokes' theorem)

But I don't know how to find ×(v×B)\displaystyle\vec{\nabla}\times(\vec{v}\times\vec{B}). Can someone nudge me in the right direction?
 
Last edited:
Looks as if the Jacobi identity could help:
×(v×B)v×(×B)+B×(×v)=0 \begin{gathered} \vec{\nabla} \times \left( \vec{v} \times \vec{B} \right)-\vec{v} \times \left( \vec{\nabla} \times \vec{B} \right)+ \vec{B} \times \left( \vec{\nabla} \times \vec{v} \right)=\vec{0} \end{gathered} or the Graßmann identity
×(v×B)=(B)v(v)B \begin{gathered} \vec{\nabla} \times \left( \vec{v} \times \vec{B} \right)=\left(\vec{\nabla}\cdot \vec{B}\right)\vec{v}-\left(\vec{\nabla}\cdot \vec{v}\right)\vec{B} \end{gathered}
Note that B B does not depend on time.
 
Last edited:
Top