unsure of how to begin this problem...

G

Guest

Guest
Here is the stuff...

This problem tests calculating new functions from old ones:

From the table below calculate the quantities asked for:

x 8 10 6
-----------------------
f(x) 10 0.5 3.5
g(x) 6 1.5 1
f'(x) -7 -1 3
g'(x) -0.5 0.5 1.5

If h(x) = f(x)/g(x). calculate h'(8)
If h(x) = g(f(x)), calculate h'(8)
f(f(8))

I did the first one and I did it correctly, but the others I'm still confused about...

Any help is appreciated...
 
For the second and third parts, use the Chain Rule, and plug in the appropriate values from the table.

Eliz.
 
I'm not sure if I understand how to apply the chain rule to those functions...
 
stapel said:
plug in the appropriate values from the table.
\(\displaystyle \L
\begin{array}{l}
h(x) = \frac{{f(x)}}{{g(x)}}\quad \Rightarrow \quad h'(x) = \frac{{f'(x)g(x) - f(x)g'(x)}}{{\left( {g(x)} \right)^2 }} \\
h(x) = g(f(x))\quad \Rightarrow \quad h'(x) = g'(f(x))f'(x) \\
h(x) = f(f(x))\quad \Rightarrow \quad h'(x) = f'(f(x))f'(x) \\
\end{array}\)
 
what do I plug in for g'(f(x)) and f'(f(x)) - that is where my problem is...
 
\(\displaystyle \L
f(8) = 10\quad ,\quad g'(10) = ?\quad \& \quad f'(10) = ?\)
 
Top