siobhanfowler
New member
- Joined
- Mar 6, 2011
- Messages
- 3
Solve for x in the following equation:
log[sub:232qava0]7[/sub:232qava0]x + log[sub:232qava0]7[/sub:232qava0](x - 1) = log[sub:232qava0]7[/sub:232qava0]2x
And these questions I answered, but I am not sure if I have done so correctly.
Beginning with the function f(x)=log[sub:232qava0]a[/sub:232qava0]x , state what transofrmations were used on this to obtain the functions given below:
p(x)= -[sup:232qava0]5/8[/sup:232qava0]log[sub:232qava0]a[/sub:232qava0]x
- A vertical compression by 5/8, and relfected in the x-axis.
r(x)= log[sub:232qava0]a[/sub:232qava0](5-x)
- Transformed horizonatally 5 right.
t(x)= 2log[sub:232qava0]a[/sub:232qava0]2x
- I know this is a vertical stretch by 2, but I am not sure how the 2x at the end affects the graph.
Oops! I lied! One more question!
Is log[sub:232qava0]3[/sub:232qava0]5 equal to log[sub:232qava0]5[/sub:232qava0]3 ? Evaluate without using logarithms.
log[sub:232qava0]7[/sub:232qava0]x + log[sub:232qava0]7[/sub:232qava0](x - 1) = log[sub:232qava0]7[/sub:232qava0]2x
And these questions I answered, but I am not sure if I have done so correctly.
Beginning with the function f(x)=log[sub:232qava0]a[/sub:232qava0]x , state what transofrmations were used on this to obtain the functions given below:
p(x)= -[sup:232qava0]5/8[/sup:232qava0]log[sub:232qava0]a[/sub:232qava0]x
- A vertical compression by 5/8, and relfected in the x-axis.
r(x)= log[sub:232qava0]a[/sub:232qava0](5-x)
- Transformed horizonatally 5 right.
t(x)= 2log[sub:232qava0]a[/sub:232qava0]2x
- I know this is a vertical stretch by 2, but I am not sure how the 2x at the end affects the graph.
Oops! I lied! One more question!
Is log[sub:232qava0]3[/sub:232qava0]5 equal to log[sub:232qava0]5[/sub:232qava0]3 ? Evaluate without using logarithms.