Trouble with Min, Max, and Inflection Points

SeekerOfDragons

New member
Joined
Oct 8, 2009
Messages
46
I'm having some major issues trying to solve the following:

find all local extrema and inflection points of:

f(x) = x + cos(2x) 0<= X <= Pi

I got f'(x) = 1 - 2 sin(2x)

f"(x) = -4 cos(2x)

I can't figure out how to solve the above for 0. through plug and play I figured out one of the inflection points to be Pi/4. I can't figure out how to get the max/min points. can't figure out how to get sin(2x) = 1/2

any hints, tips, solutions would be much appreciated
 
f(x) = x+cos(2x), 0  x π\displaystyle f(x) \ = \ x+cos(2x), \ 0 \ \le \ x \ \le\pi

f  (x) = 12sin(2x), 2x = arcsin(1/2), 2x = π6,5π6, x = π12,5π12.\displaystyle f \ ' \ (x) \ = \ 1-2sin(2x), \ 2x \ = \ arcsin(1/2), \ 2x \ = \ \frac{\pi}{6},\frac{5\pi}{6}, \ x \ = \ \frac{\pi}{12},\frac{5\pi}{12}.

f(0) = 1, endpoint\displaystyle f(0) \ = \ 1, \ endpoint

f(π/12) = π+6312, Rel. Max.\displaystyle f(\pi/12) \ = \ \frac{\pi+6\sqrt3}{12}, \ Rel. \ Max.

f(5π/12) = 5π6312, Absolute Min.\displaystyle f(5\pi/12) \ = \ \frac{5\pi-6\sqrt3}{12}, \ Absolute \ Min.

f(π) = π+1, Absolute Max\displaystyle f(\pi) \ = \ \pi+1, \ Absolute \ Max

f " (x) = 4cos(2x), 2x = arccos(0), 2x = π2,3π2, x = π4,3π4\displaystyle f \ " \ (x) \ = \ -4cos(2x), \ 2x \ = \ arccos(0), \ 2x \ = \ \frac{\pi}{2},\frac{3\pi}{2}, \ x \ = \ \frac{\pi}{4},\frac{3\pi}{4}

Points of inflection: (π4,π4),(3π4,3π4)\displaystyle Points \ of \ inflection: \ (\frac{\pi}{4},\frac{\pi}{4}),(\frac{3\pi}{4},\frac{3\pi}{4})

See graph:

[attachment=0:1mxbci5z]zip.jpg[/attachment:1mxbci5z]
 

Attachments

  • zip.jpg
    zip.jpg
    16 KB · Views: 52
Top