Hello, fgmango!
I'm having trouble finding the x-int
No wonder! . . . You're solving: \(\displaystyle f''(x)\,=\,0\)
. . You're looking for
inflection points!
\(\displaystyle f''(x)\:=\:-3\cdot\sin(x)\,-\,4\cdot\cos(2x)\:=\:0\)
Then:
.-\(\displaystyle 3\cdot\sin(x)\,-\,4[1\,-\,2\cdot\sin^2(x)]\:=\:0\)
We have a quadratic:
.\(\displaystyle 8\cdot\sin^2(x)\,-\,3\cdot\sin(x)\,-\,4\:=\:0\)
. . with roots:
.\(\displaystyle \sin(x)\:=\:\frac{3\,\pm\,\sqrt{137}}{16}\)
Inflection points occur at:
.\(\displaystyle x\;=\;\arcsin\left(\frac{3\,\pm\,\sqrt{137}}{16}\right)\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
If you're
really looking for \(\displaystyle x\)-intercepts, set \(\displaystyle f(x)\,=\,0.\)
We have:
.\(\displaystyle 3\cdot\sin(x)\,+\,\cos(2x)\:=\:0\)
Then:
.\(\displaystyle 3\cdot\sin(x)\,+\,[1\,-\,2\cdot\sin^2(x)]\:=\:0\)
We have a quadratic:
.\(\displaystyle 2\cdot\sin^2(x)\,-\,3\cdot\sin(x)\,-\,1\:=\:0\)
. . with roots:
.\(\displaystyle \sin(x)\;=\;\frac{3\,\pm\,\sqrt{17}}{4}\)
\(\displaystyle x\)-intercepts occur at:
.\(\displaystyle x\:=\:\arcsin\left(\frac{3\,\pm\,\sqrt{17}}{4}\right)\)
*