Trigonometry

r267747

New member
Joined
Oct 1, 2009
Messages
33
1. Prove that:
i) 1+tanAtanA/2=secA=tanAcotA/2-1
ii)tan(x--y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
please tell me how to start these questions
2.if cotAcotB=2,show that (cos(A+B))/cos(A-B)=1/3
mY WORK
(cos(A+B))/cos(A-B)=(cosAcosB-sinAsinB)/(cosAcosB+sinAsinB)
PLEASE TELL ME WHAT TO DO NEXT
 
2) Given: [cot(A)][cot(B)] = 2, show cos(A+B)cos(AB) = 13\displaystyle 2) \ Given: \ [cot(A)][cot(B)] \ = \ 2, \ show \ \frac{cos(A+B)}{cos(A-B)} \ = \ \frac{1}{3}

[cot(A)][cot(B)] = cos(A)cos(B)sin(A)sin(B) = 2,      cos(A)cos(B) = 2sin(A)sin(B)\displaystyle [cot(A)][cot(B)] \ = \ \frac{cos(A)cos(B)}{sin(A)sin(B)} \ = \ 2, \ \implies \ cos(A)cos(B) \ = \ 2sin(A)sin(B)

cos(A+B)cos(AB) = cos(A)cos(B)sin(A)sin(B)cos(A)cos(B)+sin(A)sin(B) = cos(A)cos(B)sin(A)sin(B)2sin(A)sin(B)+sin(A)sin(B), substitution\displaystyle \frac{cos(A+B)}{cos(A-B)} \ = \ \frac{cos(A)cos(B)-sin(A)sin(B)}{cos(A)cos(B)+sin(A)sin(B)} \ = \ \frac{cos(A)cos(B)-sin(A)sin(B)}{2sin(A)sin(B)+sin(A)sin(B)}, \ substitution

= cos(A)cos(B)sin(A)sin(B)3sin(A)sin(B) = cos(A)cos(B)3sin(A)sin(B)sin(A)sin(B)3sin(A)sin(B) = 2313 = 13\displaystyle = \ \frac{cos(A)cos(B)-sin(A)sin(B)}{3sin(A)sin(B)} \ = \ \frac{cos(A)cos(B)}{3sin(A)sin(B)}-\frac{sin(A)sin(B)}{3sin(A)sin(B)} \ = \ \frac{2}{3}-\frac{1}{3} \ = \ \frac{1}{3}
 
Top