trigonometry

r267747

New member
Joined
Oct 1, 2009
Messages
33
I havea difficulties to solve these questions, so please first see my work and then help me to solve these questions.
My work
1.PROVE THE FOLLOWING
a) sin alpha +sin(alpha+2pi/3)+ sin(alpha+4pi/3)=0
sol. using "C,D" FORMULA,
i.e,sinC+ sinD=2sin C/2+D/2 cosC/2-D/2
Actually i have a problem that in the above question which two term i will combine to form the formula so that i will get the answer zero. So please help me. simillarly i have a problem in two more questions which are:
2.sin10 degree+sin20degree+sin40degree+sin50degree=sin70degree=sin80degree
3.4sinA sin(60degree+A) sin(60degree-A)=sin3A
 
r267747 said:
I havea difficulties to solve these questions, so please first see my work and then help me to solve these questions.
My work
1.PROVE THE FOLLOWING
a) sin alpha +sin(alpha+2pi/3)+ sin(alpha+4pi/3)=0
sol. using "C,D" FORMULA,
i.e,sinC+ sinD=2sin C/2+D/2 cosC/2-D/2
Actually i have a problem that in the above question which two term i will combine to form the formula so that i will get the answer zero.

Do not understand what you are saying. Please post work - so that we know where you are having problem.

If you add, using the formula suggested, the second term and the third term of the Left-hand-side - the answer falls off.

So please help me. simillarly i have a problem in two more questions which are:
2.sin10 degree+sin20degree+sin40degree+sin50degree=sin70degree=sin80degree
3.4sinA sin(60degree+A) sin(60degree-A)=sin3A
 
1.a

sin(α)+sin(α+2π3)+sin(α+4π3) = 0\displaystyle sin(\alpha)+sin(\alpha+\frac{2\pi}{3})+sin(\alpha+\frac{4\pi}{3}) \ = \ 0

sin(α)+sin(α)cos(2π3)+cos(α)sin(2π3)+sin(α)cos(4π3)+cos(α)sin(4π3) = 0, Sum Formula.\displaystyle sin(\alpha)+sin(\alpha)cos(\frac{2\pi}{3})+cos(\alpha)sin(\frac{2\pi}{3})+sin(\alpha)cos(\frac{4\pi}{3})+cos(\alpha)sin(\frac{4\pi}{3}) \ = \ 0, \ Sum \ Formula.

sin(α)sin(α)2+3cos(α)2sin(α)23cos(α)2 = 0\displaystyle sin(\alpha)-\frac{sin(\alpha)}{2}+\frac{\sqrt3 cos(\alpha)}{2}-\frac{sin(\alpha)}{2}-\frac{\sqrt3 cos(\alpha)}{2} \ = \ 0

sin(α)sin(α)+3cos(α)23cos(α)2 = 0\displaystyle sin(\alpha)-sin(\alpha)+\frac{\sqrt3 cos(\alpha)}{2}-\frac{\sqrt3 cos(\alpha)}{2} \ = \ 0

0 = 0\displaystyle 0 \ = \ 0
 
3), don't understand 2

4sin(A)[sin(π/3+A)][sin(π/3A)] = sin(3A)\displaystyle 4sin(A)[sin(\pi/3+A)][sin(\pi/3-A)] \ = \ sin(3A)

4sin(A)[sin(π/3)cos(A)+cos(π/3)sin(A)][sin(π/3)cos(A)cos(π/3)sin(A)] = sin(3A), (Sum\displaystyle 4sin(A)[sin(\pi/3)cos(A)+cos(\pi/3)sin(A)][sin(\pi/3)cos(A)-cos(\pi/3)sin(A)] \ = \ sin(3A), \ (Sum

and Differences Formulas).\displaystyle and \ Differences \ Formulas).

4sin(A)[3cos(A)2+sin(A)2][3cos(A)2sin(A)2] = sin(3A)\displaystyle 4sin(A)\bigg[\frac{\sqrt3 cos(A)}{2}+\frac{sin(A)}{2}\bigg]\bigg[\frac{\sqrt3 cos(A)}{2}-\frac{sin(A)}{2}\bigg] \ = \ sin(3A)

4sin(A)[3cos2(A)43sin(A)cos(A)4+3sin(A)cos(A)4sin2(A)4] = sin(3A)\displaystyle 4sin(A)\bigg[\frac{3cos^{2}(A)}{4}-\frac{\sqrt3 sin(A)cos(A)}{4}+\frac{\sqrt3 sin(A)cos(A)}{4}-\frac{sin^{2}(A)}{4}\bigg] \ = \ sin(3A)

4sin(A)[3cos2(A)4sin2(A)4] = sin(3A)\displaystyle 4sin(A)\bigg[\frac{3cos^{2}(A)}{4}-\frac{sin^{2}(A)}{4}\bigg] \ = \ sin(3A)

sin(A)[3cos2(A)sin2(A)] = sin(3A)\displaystyle sin(A)[3cos^{2}(A)-sin^{2}(A)] \ = \ sin(3A)

sin(A)[3(1sin2(A))sin2(A)] = sin(3A), (sin2(A)+cos2(A) = 1).\displaystyle sin(A)[3(1-sin^{2}(A))-sin^{2}(A)] \ = \ sin(3A), \ (sin^{2}(A)+cos^{2}(A) \ = \ 1).

sin(A)[34sin2(A)] = sin(3A)\displaystyle sin(A)[3-4sin^{2}(A)] \ = \ sin(3A)

sin(A)[34(1cos(2A)2)] = sin(3A) (PowerReducing Formulas).\displaystyle sin(A)\bigg[3-4\bigg(\frac{1-cos(2A)}{2}\bigg)\bigg] \ = \ sin(3A) \ (Power-Reducing \ Formulas).

sin(A)[32+2cos(2A)] = sin(3A)\displaystyle sin(A)[3-2+2cos(2A)] \ = \ sin(3A)

sin(A)[1+2cos(2A)] = sin(3A)\displaystyle sin(A)[1+2cos(2A)] \ = \ sin(3A)

sin(A)+2sin(A)cos(2A) = sin(3A)\displaystyle sin(A)+2sin(A)cos(2A) \ = \ sin(3A)

sin(A)+212[sin(3A)+sin(A)] = sin(3A), (ProducttoSum Formulas).\displaystyle sin(A)+2\frac{1}{2}[sin(3A)+sin(-A)] \ = \ sin(3A), \ (Product-to-Sum \ Formulas).

sin(A)+sin(3A)sin(A) = sin(3A), (sin(A) = sin(A), odd function).\displaystyle sin(A)+sin(3A)-sin(A) \ = \ sin(3A), \ (sin(-A) \ = \ -sin(A), \ odd \ function).

Hence, sin(3A) = sin(3A) QED\displaystyle Hence, \ sin(3A) \ = \ sin(3A) \ QED
 
Top