Trigonometry

yuka

New member
Joined
Feb 16, 2006
Messages
3
how do I do this? :roll:

A ship sails on a course of 038° from an island. After 50km it changes course to 140° and sails for another 100km.
Find;
a) the distance from the boat to the island
b) the bearing from the island to the boat
 
Hello, yuka!

A ship sails on a course of 038° from an island.
After 50km it changes course to 140° and sails for another 100km.

Find: a) the distance from the boat to the island
\(\displaystyle \;\;\;\,\) b) the bearing from the island to the boat
Code:
      P       Q
      :       :
      :      B:
      :       * 140°
      :      /:\
      :     / : \
      :    /  :  \
      :38°/38°:40°\
      :  /    :    \
      : /50   :     \100
      :/      :      \
     A*       :       \
      :   *   :        \
      :       *         \
      :       :   *      \
      :       :       *   \
      :       R            *C

We are given: \(\displaystyle \angle PAB\,=\,38^o\) . . . Hence: \(\displaystyle \,\angle ABR\,=\,38^o\)
\(\displaystyle \;\;\)and \(\displaystyle AB\,=\,50\) km.

We are given: \(\displaystyle \angle QBC\,=\,140^o\) . . . Hence: \(\displaystyle \angle RBC\,=\,40^o\)
\(\displaystyle \;\;\)and \(\displaystyle BC\,=\,100\) km.


In \(\displaystyle \Delta ABC\), we have: \(\displaystyle AB\,=\,50,\:BC\,=\,100,\;\angle B\,=\,78^o\)

Law of Cosines: \(\displaystyle \,AC^2\:=\:50^2\,+\,100^2\,-\,2(50)(100)\cos78^o\:=\:10420.88309\)

a) Therefore: \(\displaystyle \,AC\:=\:102.0827267\:\approx\:102\) km


The ship's bearing is: \(\displaystyle \angle PAC\:=\:38^o\,+\,\angle BAC\:=\:38^o\,+\,\angle A\)

In \(\displaystyle \Delta ABC\), we have: \(\displaystyle AB\,=\,50,\:AC\,=\,102,\:BC\,=\,100\)

Law of Cosines: \(\displaystyle \:\cos A\:=\:\frac{50^2\,+\,102^2\,-\,100^2}{2(50)(102)}\:=\:0.284705882\)

Hence: \(\displaystyle \,\angle A\:=\:73.45873143\:\approx\;73.5^o\)

b) Therefore, the ship's bearing is: \(\displaystyle \,38^o\,+\,73.5^o\:=\:111.5^o\)
 
Top