Trigonometry

yuka

New member
Joined
Feb 16, 2006
Messages
3
how do I do this? :roll:

A ship sails on a course of 038° from an island. After 50km it changes course to 140° and sails for another 100km.
Find;
a) the distance from the boat to the island
b) the bearing from the island to the boat
 
Hello, yuka!

A ship sails on a course of 038° from an island.
After 50km it changes course to 140° and sails for another 100km.

Find: a) the distance from the boat to the island
       \displaystyle \;\;\;\, b) the bearing from the island to the boat
Code:
      P       Q
      :       :
      :      B:
      :       * 140°
      :      /:\
      :     / : \
      :    /  :  \
      :38°/38°:40°\
      :  /    :    \
      : /50   :     \100
      :/      :      \
     A*       :       \
      :   *   :        \
      :       *         \
      :       :   *      \
      :       :       *   \
      :       R            *C

We are given: PAB=38o\displaystyle \angle PAB\,=\,38^o . . . Hence: ABR=38o\displaystyle \,\angle ABR\,=\,38^o
    \displaystyle \;\;and AB=50\displaystyle AB\,=\,50 km.

We are given: QBC=140o\displaystyle \angle QBC\,=\,140^o . . . Hence: RBC=40o\displaystyle \angle RBC\,=\,40^o
    \displaystyle \;\;and BC=100\displaystyle BC\,=\,100 km.


In ΔABC\displaystyle \Delta ABC, we have: AB=50,BC=100,  B=78o\displaystyle AB\,=\,50,\:BC\,=\,100,\;\angle B\,=\,78^o

Law of Cosines: AC2=502+10022(50)(100)cos78o=10420.88309\displaystyle \,AC^2\:=\:50^2\,+\,100^2\,-\,2(50)(100)\cos78^o\:=\:10420.88309

a) Therefore: AC=102.0827267102\displaystyle \,AC\:=\:102.0827267\:\approx\:102 km


The ship's bearing is: PAC=38o+BAC=38o+A\displaystyle \angle PAC\:=\:38^o\,+\,\angle BAC\:=\:38^o\,+\,\angle A

In ΔABC\displaystyle \Delta ABC, we have: AB=50,AC=102,BC=100\displaystyle AB\,=\,50,\:AC\,=\,102,\:BC\,=\,100

Law of Cosines: cosA=502+102210022(50)(102)=0.284705882\displaystyle \:\cos A\:=\:\frac{50^2\,+\,102^2\,-\,100^2}{2(50)(102)}\:=\:0.284705882

Hence: A=73.45873143  73.5o\displaystyle \,\angle A\:=\:73.45873143\:\approx\;73.5^o

b) Therefore, the ship's bearing is: 38o+73.5o=111.5o\displaystyle \,38^o\,+\,73.5^o\:=\:111.5^o
 
Top