Hello, Me345!
Prove:
. . sinθ - cosθ + 1 . . . . 1 + sinθ
. . ------------------ . = . ----------
. . sinθ + cosθ - 1 . . . . . .cosθ
.
. . . . . . . . . sinθ + (1 - cosθ)
We have:
. --------------------
. . . . . . . . . sinθ - (1 - cosθ)
Multiply top and bottom by: sinθ + (1 - cosθ)
. . sinθ + (1 - cosθ)
. sinθ + (1 - cosθ)
. . -------------------- . ---------------------
. . sinθ - (2 - cosθ)
. .sinθ + (1 - cosθ)
The numerator is:
.[sinθ + (1 - cosθ)]<sup>2</sup>
. . =
. sin<sup>2</sup>θ + 2sinθ(1 - cosθ) + (1 - cosθ)<sup>2</sup>
. . =
. sin<sup>2</sup>θ + 2sinθ -2sinθcosθ + 1 - 2cosθ + cos<sup>2</sup>θ
. . =
. 2 + 2sinθ - 2sinθcosθ - 2cosθ
. . =
. 2(1 + sinθ - sinθcosθ - cosθ)
. . =
. 2[(1 + sinθ) - cosθ(1 + sinθ)]
. . =
. 2(1 + sinθ)(1 - cosθ)
The denominator is:
.(sinθ)<sup>2</sup> - (1 - cosθ)<sup>2</sup>
. . =
. sin<sup>2</sup>θ - 1 + 2cosθ - cos<sup>2</sup>θ
. . =
. (1 - cos2θ) - 1 + 2cosθ - cos<sup>2</sup>θ
. . =
. 2cosθ - 2cos<sup>2</sup>θ
. . =
. 2cosθ(1 - cosθ)
. . . . . . . . . . . . . . . . . . . 2(1 + sinθ)(1 - cosθ)
. . . . 1 + sinθ
The fraction becomes:
. --------------------------
. =
. -----------
. . . . . . . . . . . . . . . . . . . . .2cosθ(1 - cosθ)
. . . . . . . . cosθ