T_TEngineer_AdamT_T
New member
- Joined
- Apr 15, 2007
- Messages
- 24
Hey Guys
I need assistance with this diffucilt problem
\(\displaystyle \L\:\int{\frac{dx}{(4x^2-9)}^{\frac{3}{2}}\)
let x = \(\displaystyle 3\sec(\theta)d{\theta}\)
let dx = \(\displaystyle 3\sec(\theta)\tan(\theta)d{\theta}\)
integrating:
\(\displaystyle \int{\frac{dx}{(4(3\sec{\theta})^2-9)^{\frac{3}{2}}}\)
\(\displaystyle \int{\frac{dx}{(4(9\sec{\theta})^2-9})^{\frac{3}{2}}}\)
\(\displaystyle \int{\frac{dx}{27(4(\sec{\theta})^2-1)^{\frac{3}{2}}}\)
I stop here cause isnt
\(\displaystyle 4((\sec{\theta})^{2}-1)\)
equal to
\(\displaystyle 4(\tan{\theta})^{2}\)?
Edit error on latex
I need assistance with this diffucilt problem
\(\displaystyle \L\:\int{\frac{dx}{(4x^2-9)}^{\frac{3}{2}}\)
let x = \(\displaystyle 3\sec(\theta)d{\theta}\)
let dx = \(\displaystyle 3\sec(\theta)\tan(\theta)d{\theta}\)
integrating:
\(\displaystyle \int{\frac{dx}{(4(3\sec{\theta})^2-9)^{\frac{3}{2}}}\)
\(\displaystyle \int{\frac{dx}{(4(9\sec{\theta})^2-9})^{\frac{3}{2}}}\)
\(\displaystyle \int{\frac{dx}{27(4(\sec{\theta})^2-1)^{\frac{3}{2}}}\)
I stop here cause isnt
\(\displaystyle 4((\sec{\theta})^{2}-1)\)
equal to
\(\displaystyle 4(\tan{\theta})^{2}\)?
Edit error on latex