T_TEngineer_AdamT_T
New member
- Joined
- Apr 15, 2007
- Messages
- 24
Hi
Please help me with another difficult problem;
\(\displaystyle \L \int \frac{\ln^3w}{w\sqrt{\ln^2w - 4}}dw\)
let ln(w) = 2sec(theta)
let d(ln(w)) = 2sec(theta)tan(theta)
\(\displaystyle \L\\\int \frac{(2\sec{\theta})^3dw}{e^{2\sec{\theta}}\sqrt{(2\sec{\theta})^2-4}}\)
\(\displaystyle \L\\\int \frac{8(\sec{\theta})^3(2\sec{\theta}\tan{\theta})d{\theta}}{2e^{2\sec{\theta}}\sqrt{\tan^2{\theta}}\)
cancel the tan
\(\displaystyle \L\\8\int \frac{\sec^4{\theta}d{\theta}}{e^{2\sec{\theta}}\)
^and then im stuck with this integral
should i use int by parts?
but the answer is
\(\displaystyle \L\\\frac{1}{3}\sqrt{\ln^2w-4}(8+ln^2w) + C\)
Please help me with another difficult problem;
\(\displaystyle \L \int \frac{\ln^3w}{w\sqrt{\ln^2w - 4}}dw\)
let ln(w) = 2sec(theta)
let d(ln(w)) = 2sec(theta)tan(theta)
\(\displaystyle \L\\\int \frac{(2\sec{\theta})^3dw}{e^{2\sec{\theta}}\sqrt{(2\sec{\theta})^2-4}}\)
\(\displaystyle \L\\\int \frac{8(\sec{\theta})^3(2\sec{\theta}\tan{\theta})d{\theta}}{2e^{2\sec{\theta}}\sqrt{\tan^2{\theta}}\)
cancel the tan
\(\displaystyle \L\\8\int \frac{\sec^4{\theta}d{\theta}}{e^{2\sec{\theta}}\)
^and then im stuck with this integral
should i use int by parts?
but the answer is
\(\displaystyle \L\\\frac{1}{3}\sqrt{\ln^2w-4}(8+ln^2w) + C\)