Hello, dagr8est!
Anyone know the proof for sin(θ) = cos(90 − θ)?
Are you familiar with the "compound angle" formulas?
. . . \(\displaystyle \sin(A\,\pm\,B)\;=\;\sin(A)\cdot\cos(B)\,\pm\,\sin(B)\cdot\cos(A)\)
. . . \(\displaystyle \cos(A\,\pm\,B)\;=\;\cos(A)\cdot\cos(B)\,\mp\,\sin(A)\cdot\sin(B)\)
The right side is:
.\(\displaystyle \cos(90^o\,-\,\theta)\;=\;\cos(90^o)\cdot\cos(\theta)\:+\:\sin(90^o)\cdot\sin(\theta)\)
Since \(\displaystyle \cos(90^o)=0\) and \(\displaystyle \sin(90^o)=1\), we have:
. . . \(\displaystyle \cos(90^o\,-\,\theta)\;=\;0\cdot\cos(\theta)\,+\,1\cdot\sin(\theta) \;=\;\sin(\theta)\)