Trignometric Substitution

sareen

New member
Joined
Oct 9, 2009
Messages
24
?(dx/?36-x^2)

My solution:
x=6sin?
dx= 6cos?d?
Therefore,
=?(6cos?d?/6cos?)
=?d?

What to do next???
 
sareen said:
?(dx/?36-x^2)

My solution:
x=6sin?

? = sin[sup:jz7wrb9v]-1[/sup:jz7wrb9v](x/6)

dx= 6cos?d?
Therefore,
=?(6cos?d?/6cos?)
=?d? = ? + C = sin[sup:jz7wrb9v]-1[/sup:jz7wrb9v](x/6) + C


What to do next???
 
dx(36x2). Let x = 6sin(θ), then dx = 6cos(θ)dθ.\displaystyle \int \frac{dx}{\sqrt(36-x^{2})}. \ Let \ x \ = \ 6sin(\theta), \ then \ dx \ = \ 6cos(\theta)d\theta.

Ergo, 6cos(θ)dθ(3636sin2(θ))\displaystyle Ergo, \ 6\int \frac{cos(\theta)d\theta}{\sqrt(36-36sin^{2}(\theta))}

= cos(θ)dθcos2(θ) = dθ = θ+C\displaystyle = \ \int\frac{cos(\theta)d\theta}{\sqrt cos^{2}(\theta)} \ = \ \int d\theta \ = \ \theta+C

Now, x = 6sin(θ), sin(θ) = x6, hence θ = arcsin(x/6)\displaystyle Now, \ x \ = \ 6sin(\theta), \ sin(\theta) \ = \ \frac{x}{6}, \ hence \ \theta \ = \ arcsin(x/6)

Therefore, dx(36x2) = arcsin(x/6)+C.\displaystyle Therefore, \ \int \frac{dx}{\sqrt(36-x^{2})} \ = \ arcsin(x/6)+C.
 
Top