Trignometric Integrals! help please!

G

Guest

Guest
Evaluate the trigonometric integral of:

/((secx)(tanx - secx))dx

and


/(tan^2(y)+1)dy

I'm not sure what I should substitute for "u"...please help me along the process
 
jackiemofo said:
Evaluate the trigonometric integral of:

[(secx)(tanxsecx)]dx\displaystyle \int\left[(secx)(tanx - secx)\right]dx

sec(x)tan(x)dxsec2(x)dx\displaystyle \int sec(x)tan(x)dx-\int sec^{2}(x)dx

First part: sec(x)tan(x)dx\displaystyle \int sec(x)tan(x)dx

Let u=sec(x),   du=sec(x)tan(x)dx\displaystyle u=sec(x), \;\ du=sec(x)tan(x)dx

du=u\displaystyle \int du=u

resub:

=sec(x)\displaystyle =\boxed{sec(x)}

Second part:

sec2(x)dx\displaystyle sec^{2}(x)dx

Let u=tan(x),   du=sec2(x)dx\displaystyle u=tan(x), \;\ du=sec^{2}(x)dx

du=u\displaystyle \int du=u

=tan(x)\displaystyle =\boxed{tan(x)}

So, put it together and we have:

sec(x)tan(x)\displaystyle \boxed{sec(x)-tan(x)}


(tan2(y)+1)dy\displaystyle \int (tan^{2}(y)+1)dy

Use the identity tan2(y)=sec2(y)1\displaystyle tan^{2}(y)=sec^{2}(y)-1

Then, you can use the result from the first part.
 
Top