Trignometric Integrals! help please!

G

Guest

Guest
Evaluate the trigonometric integral of:

/((secx)(tanx - secx))dx

and


/(tan^2(y)+1)dy

I'm not sure what I should substitute for "u"...please help me along the process
 
jackiemofo said:
Evaluate the trigonometric integral of:

\(\displaystyle \int\left[(secx)(tanx - secx)\right]dx\)

\(\displaystyle \int sec(x)tan(x)dx-\int sec^{2}(x)dx\)

First part: \(\displaystyle \int sec(x)tan(x)dx\)

Let \(\displaystyle u=sec(x), \;\ du=sec(x)tan(x)dx\)

\(\displaystyle \int du=u\)

resub:

\(\displaystyle =\boxed{sec(x)}\)

Second part:

\(\displaystyle sec^{2}(x)dx\)

Let \(\displaystyle u=tan(x), \;\ du=sec^{2}(x)dx\)

\(\displaystyle \int du=u\)

\(\displaystyle =\boxed{tan(x)}\)

So, put it together and we have:

\(\displaystyle \boxed{sec(x)-tan(x)}\)


\(\displaystyle \int (tan^{2}(y)+1)dy\)

Use the identity \(\displaystyle tan^{2}(y)=sec^{2}(y)-1\)

Then, you can use the result from the first part.
 
Top