JJ007 said:\(\displaystyle \int \frac {\ \sqrt{a^2-x^2}}{x}dx\)
\(\displaystyle x=a sin \theta\)....................\(\displaystyle dx = a cos\theta d\theta\)
\(\displaystyle \sqrt{a^2-x^2} = \sqrt{a^2-a^2sin^2 \theta} = a\cdot \sqrt{cos^2 \theta}\)
Not sure how to do the rest.
Subhotosh Khan said:JJ007 said:\(\displaystyle \int \frac {\ \sqrt{a^2-x^2}}{x}dx\)
\(\displaystyle x=a sin \theta\)....................\(\displaystyle dx = a cos\theta d\theta\)
\(\displaystyle \sqrt{a^2-x^2} = \sqrt{a^2-a^2sin^2 \theta} = a\cdot \sqrt{cos^2 \theta}\)
JJ007 said:Subhotosh Khan said:JJ007 said:\(\displaystyle \int \frac {\ \sqrt{a^2-x^2}}{x}dx\)
\(\displaystyle x=a sin \theta\)....................\(\displaystyle dx = a cos\theta d\theta\)
\(\displaystyle \sqrt{a^2-x^2} = \sqrt{a^2-a^2sin^2 \theta} = a\cdot \sqrt{cos^2 \theta}\)
\(\displaystyle \int \frac {\ a cos \theta * a cos\theta}{a sin\theta}d\theta?\)
JJ007 said:Which part were you referring to?
\(\displaystyle \int \frac {\ a cos \theta * a cos\theta}{a sin\theta}d\theta= a \int (\frac{1}{sin\theta} - sin\theta)d \theta= a \left [\int (csc \theta d\theta - \int sin\theta d\theta \right ]\)