JJ007 said:∫x a2−x2dx
x=asinθ....................dx=acosθdθ
a2−x2=a2−a2sin2θ=a⋅cos2θ
Not sure how to do the rest.
Subhotosh Khan said:JJ007 said:∫x a2−x2dx
x=asinθ....................dx=acosθdθ
a2−x2=a2−a2sin2θ=a⋅cos2θ
JJ007 said:Subhotosh Khan said:JJ007 said:∫x a2−x2dx
x=asinθ....................dx=acosθdθ
a2−x2=a2−a2sin2θ=a⋅cos2θ
∫asinθ acosθ∗acosθdθ?
JJ007 said:Which part were you referring to?
∫asinθ acosθ∗acosθdθ=a∫(sinθ1−sinθ)dθ=a[∫(cscθdθ−∫sinθdθ]