\(\displaystyle \lim_{x\rightarrow0}\frac{sin^{2}(x)cos^{2}(x)}{x^{2}}, \ \frac{(0)(1)}{0}, \ gives \ the \ indeterminate \ form \ \frac{0}{0}.\)
\(\displaystyle However, \ not \ to \ worry, \ the \ Marquis \ to \ the \ rescue.\)
\(\displaystyle \frac{D_x[sin^{2}(x)cos^{2}(x)]}{D_x[x^{2}]} \ = \ \frac{2sin(x)cos^{3}(x)-2cos(x)sin^{3}(x)}{2x} \ =\)
\(\displaystyle \frac{2sin(x)cos(x)(cos^{2}(x)-sin^{2}(x))}{2x} \ = \ \frac{sin(x)cos(x)cos(2x)}{x},\)
\(\displaystyle \frac{(0)(1)(1)}{(0)}, \ gives \ the \ indeterminate \ form \ \frac{0}{0} \ again, \ so \ L'Hopital \ again \ to \ the \ rescue.\)
\(\displaystyle \frac{D_x[sin(x)cos(x)cos(2x)]}{D_x[x]} \ = \ \frac{cos^{2}(x)cos(2x)-sin^{2}(x)cos(2x)-2sin(x)cos(x)sin(2x)}{1},\)
\(\displaystyle \frac{(1)(1)-(0)(1)-2(0)(1)(0)}{1} \ = \ \frac{1}{1} \ = \ 1, \ QED\)
\(\displaystyle Hence, \ \lim_{x\rightarrow0}\frac{sin^{2}(x)cos^{2}(x)}{x^{2}} \ = \ 1.\)