Trig Proofs

jimbo10

New member
Joined
Mar 9, 2006
Messages
1
Ok, I'm not great at this.
Would someone please explain how you prove this? :)
I'd be most greatful, thanks in advance. I'll see how I can hep around here in return! :D

sec x (1 + sin x) = tan x (1 + csc x)


(The x's are theta's, but I had no sign the them :))
 
Hello, jimbo10!

This is a particularly tricky one . . .


Prove: \(\displaystyle \,\sec\theta(1\,+\,\sin\theta) \:=\:\tan\theta(1\,+\,\csc\theta)\)

The right side is: \(\displaystyle \L\,\tan\theta(1\,+\,\csc\theta) \;= \;\frac{\sin\theta}{\cos\theta}\left(1\,+\,\frac{1}{\sin\theta}\right)\)

Multiply: \(\displaystyle \L\,\frac{\sin\theta}{\cos\theta}\,+\,\frac{1}{\cos\theta}\)

Since \(\displaystyle \frac{1}{\cos\theta}\,=\,\sec\theta\), we have: \(\displaystyle \L\,\sin\theta\cdot\sec\theta\,+\,\sec\theta\)

Factor: \(\displaystyle \L\,\sec\theta(\sin\theta\,+\,1)\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I tried it "the other way", but it took Olympic-level gymnastics.

On the left, we have: \(\displaystyle \,\sec\theta(1\,+\,\sin\theta) \;= \;\L\frac{1}{\cos\theta}\,\)\(\displaystyle (1\,+\,\sin\theta)\)

Multiply: \(\displaystyle \L\,\frac{1}{\cos\theta}\,+\,\frac{\sin\theta}{\cos\theta}\)


Multiply the first fraction by \(\displaystyle \frac{\sin\theta}{\sin\theta}\):

\(\displaystyle \L\;\;\frac{1}{\cos\theta}\cdot\frac{\sin\theta}{\sin\theta}\,+\,\frac{\sin\theta}{\cos\theta} \:=\;\frac{\sin\theta}{\cos\theta}\cdot\frac{1}{\sin\theta}\,+\,\frac{\sin\theta}{\cos\theta} \;=\)\(\displaystyle \;\tan\theta\cdot\csc\theta\,+\,\tan\theta\)


Factor: \(\displaystyle \,\tan\theta(\csc\theta\,+\,1)\)
 
Top