Trig problem

Expand the left hand side using the formulas for the cosine of the sum and difference of two angles. Then just work through the algebra and simplify.
 
Hello, Rolita!

If no one is responding, it's because it is not an identity.

I think this is what you meant: \(\displaystyle \;\cos(A\,-\,B)\cdot\cos(A\,+\,B)\;=\;\cos^2A\,-\,\sin^2B\)


The left side is: \(\displaystyle \:[\cos A\cdot\cos B\,+\,\sin A\cdot\sin B][\cos A\cdot\cos B\,-\,\sin A\cdot\sin B]\)

\(\displaystyle \;\;\;=\;\;\;\cos^2A\cdot\underbrace{\cos^2B}\;\;\;-\;\;\;\underbrace{\sin^2A}\cdot\sin^2B\)
\(\displaystyle \;\;\;=\;\cos^2A(\overbrace{1\,-\,\sin^2B})\,-\,(\overbrace{1\,-\cos^2A})\sin^2B\)

\(\displaystyle \;\;\;=\;\cos^2A\,-\,\cos^2A\cdot\sin^2B\,-\,\sin^2B \,+\,\cos^2A\cdot\sin^2B\)

\(\displaystyle \;\;\;=\;\cos^2A\,-\,\sin^2B\)
 
Top