Trig. Problem, totally stuck!

yasaminG

New member
Joined
Nov 6, 2005
Messages
27
HI i need help with this problem, please help me if you can!!

@=theta

(sin^2@)(1+ncot^2@)

we need to prove that it is equal to (cos^2@)(n+tan^2@)
 
Hello, yasaminG!

sin2θ(1+ncot2θ)  =  cos2θ(n+tan2θ)\displaystyle \sin^2\theta(1\,+\,n\cdot\cot^2\theta)\;=\;cos^2\theta(n\,+\,tan^2\theta)
The left side is: .sin2θ(cos2θcos2θ+ncos2θsin2θ)  =  sin2θcos2θcos2θ+ncos2θ\displaystyle \sin^2\theta\left(\frac{\cos^2\theta}{\cos^2\theta}\,+\,n\cdot\frac{\cos^2\theta}{\sin^2\theta}\right)\;=\;\frac{\sin^2\theta\cdot\cos^2\theta}{\cos^2\theta}\,+\,n\cdot\cos^2\theta

Factor: .cos2θ(sin2θcos2θ+n)  =  cos2θ(tan2θ+n)\displaystyle \cos^2\theta\left(\frac{sin^2\theta}{\cos^2\theta}\,+\,n\right)\;=\;\cos^2\theta(\tan^2\theta\,+\,n)
 
Top