G
Guest
Guest
1.) Verify the identity tan(x) + cot(y) / tan(x) * cot(y) = tan(y) + cot(x)
2.) Rewrite the expression sin^2(x) * cos^2(x) in terms of the first power of cosine.
This is what I did when I attempted it:
(1 - cos(2x))/2 * (1+cos(2x))/2 =
1 - cos^2(2x)/4 =
1/4 (1 - cos^2(2x)) =
1/4(1 - 1 + cos(4x)/2) =
1/4 - 1/8 + 1/8cos(4x) =
Then following the example in the book, I guess it ends at:
1/8(3 + cos(4x)
If this is correct, why 3? (1/8)*3 doesn't equal 1/4...
3.) Find all solutions to the equation 2sin^2(x) = 2 + cos(x) in the interval [0,2pie)
I attempted it and did this:
2sin^2(x) - 2 = cos(x)
-2(1 - sin^2(x)) = cos(x)
-2(cos^2(x)) = cos(x)
I'm stuck at this point.
4.) Use a difference identity to find the exact value of tan(15)
I did this:
tan(u-v) = tan(u) - tan(v) / 1+tan(u)*tan(v)
tan(60-45) = tan(60) - tan(45) / 1+tan(60)*tan(45)
= sqrt(3)-1 / 1+sqrt(3)
Then I did this:
(sqrt(3)-1)/1 * 1/1+sqrt(3) =
sqrt(3) + 3 - 1 - sqrt(3) = 2
tan(15)=2? My calculator disagrees.
5.) Use a half angle identity to find the exact value of sin(u/2) given that sec(u) = -5/3 and pie/2 < u < pie
:?
2.) Rewrite the expression sin^2(x) * cos^2(x) in terms of the first power of cosine.
This is what I did when I attempted it:
(1 - cos(2x))/2 * (1+cos(2x))/2 =
1 - cos^2(2x)/4 =
1/4 (1 - cos^2(2x)) =
1/4(1 - 1 + cos(4x)/2) =
1/4 - 1/8 + 1/8cos(4x) =
Then following the example in the book, I guess it ends at:
1/8(3 + cos(4x)
If this is correct, why 3? (1/8)*3 doesn't equal 1/4...
3.) Find all solutions to the equation 2sin^2(x) = 2 + cos(x) in the interval [0,2pie)
I attempted it and did this:
2sin^2(x) - 2 = cos(x)
-2(1 - sin^2(x)) = cos(x)
-2(cos^2(x)) = cos(x)
I'm stuck at this point.
4.) Use a difference identity to find the exact value of tan(15)
I did this:
tan(u-v) = tan(u) - tan(v) / 1+tan(u)*tan(v)
tan(60-45) = tan(60) - tan(45) / 1+tan(60)*tan(45)
= sqrt(3)-1 / 1+sqrt(3)
Then I did this:
(sqrt(3)-1)/1 * 1/1+sqrt(3) =
sqrt(3) + 3 - 1 - sqrt(3) = 2
tan(15)=2? My calculator disagrees.
5.) Use a half angle identity to find the exact value of sin(u/2) given that sec(u) = -5/3 and pie/2 < u < pie
:?