Hello, Rsls79!
\(\displaystyle \L\frac{\cot\theta}{1\,-\,\tan\theta}\,+\,\frac{\tan\theta}{1\,-\,\cot\theta}\:\)\(\displaystyle =\:\cot\theta\,+\,\tan\theta\,+\,1\)
Both your ideas are good and will work.
\(\displaystyle \;\;\)But either way, it's a
very messy problem!
The left side is: \(\displaystyle \L\,\frac{\frac{1}{\tan\theta}}{1\,-\,\tan\theta}\,+\,\frac{\tan\theta}{1\,-\,\frac{1}{\tan\theta}}\)
Multiply top and bottom of both fractions by \(\displaystyle \tan\theta:\)
\(\displaystyle \L\;\;\;\frac{1}{\tan\theta(1\,-\,\tan\theta)}\,+\,\frac{\tan^2\theta}{\tan\theta\,-\,1} \;= \;\frac{1}{\tan\theta(1\,-\,\tan\theta)}\,-\,\frac{\tan^2\theta}{1\,-\,\tan\theta}\)
Get a common denominator: \(\displaystyle \L\:\frac{1}{\tan\theta(1\,-\,\tan\theta)} \,- \,\frac{\tan^3\theta}{\tan\theta(1\,-\,\tan\theta)}\)
Combine: \(\displaystyle \L\:\frac{1\,-\,\tan^3\theta}{\tan\theta(1\,-\,\tan\theta)}\)
The numerator is a difference of cubes: \(\displaystyle \L\:\frac{(1\,-\,\tan\theta)(1\,+\,\tan\theta\,+\,\tan^2\theta)}{\tan\theta(1\,-\,\tan\theta)}\)
Can you finish it now?