How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!!
M minimopeds New member Joined May 23, 2009 Messages 1 May 23, 2009 #1 How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!!
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 May 23, 2009 #2 Re: Trig Identities minimopeds said: How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!! Click to expand... 1sin2x+1cos2x=\displaystyle \frac{1}{\sin^2{x}} + \frac{1}{\cos^2{x}} =sin2x1+cos2x1= cos2xsin2xcos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x}}{\sin^2{x}\cos^2{x}} + \frac{\sin^2{x}}{\sin^2{x}\cos^2{x}} =sin2xcos2xcos2x+sin2xcos2xsin2x= cos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x} + \sin^2{x}}{\sin^2{x}\cos^2{x}} =sin2xcos2xcos2x+sin2x= 1sin2xcos2x=\displaystyle \frac{1}{\sin^2{x}\cos^2{x}} =sin2xcos2x1= 1sin2x(1−sin2x)=\displaystyle \frac{1}{\sin^2{x}(1 - \sin^2{x})} =sin2x(1−sin2x)1= 1sin2x−sin4x\displaystyle \frac{1}{\sin^2{x} - \sin^4{x}}sin2x−sin4x1
Re: Trig Identities minimopeds said: How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!! Click to expand... 1sin2x+1cos2x=\displaystyle \frac{1}{\sin^2{x}} + \frac{1}{\cos^2{x}} =sin2x1+cos2x1= cos2xsin2xcos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x}}{\sin^2{x}\cos^2{x}} + \frac{\sin^2{x}}{\sin^2{x}\cos^2{x}} =sin2xcos2xcos2x+sin2xcos2xsin2x= cos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x} + \sin^2{x}}{\sin^2{x}\cos^2{x}} =sin2xcos2xcos2x+sin2x= 1sin2xcos2x=\displaystyle \frac{1}{\sin^2{x}\cos^2{x}} =sin2xcos2x1= 1sin2x(1−sin2x)=\displaystyle \frac{1}{\sin^2{x}(1 - \sin^2{x})} =sin2x(1−sin2x)1= 1sin2x−sin4x\displaystyle \frac{1}{\sin^2{x} - \sin^4{x}}sin2x−sin4x1
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 May 23, 2009 #3 Re: Trig Identities Hello, minimopeds!\displaystyle \text{Hello, minimopeds!}Hello, minimopeds! Another approach . . .\displaystyle \text{Another approach . . .}Another approach . . . Show that: 1sin2x+1cos2x = 1sin2 x−sin4 x\displaystyle \boxed{\text{Show that: }\;\frac{1}{\sin^2x} +\frac{1}{\cos^2x} \;=\;\frac{1}{\sin^2\!x-\sin^4\!x}}Show that: sin2x1+cos2x1=sin2x−sin4x1 Click to expand... We have: 1sin2 x+1cos2 x = 1sin2 x+11−sin2 x\displaystyle \text{We have: }\;\frac{1}{\sin^2\!x} + \frac{1}{\cos^2\!x} \;=\; \frac{1}{\sin^2\!x} + \frac{1}{1-\sin^2\!x}We have: sin2x1+cos2x1=sin2x1+1−sin2x1 Get a common denominator:\displaystyle \text{Get a common denominator:}Get a common denominator: . . 1sin2 x⋅1−sin2 x1−sin2 x+11−sin2 x⋅sin2 xsin2 x = 1−sin2 x+sin2 xsin2 x(1−sin2 x)\displaystyle \frac{1}{\sin^2\!x}\cdot\frac{1-\sin^2\!x}{1-\sin^2\!x} + \frac{1}{1-\sin^2\!x}\cdot\frac{\sin^2\!x}{\sin^2\!x} \;=\;\frac{1-\sin^2\!x + \sin^2\!x}{\sin^2\!x(1-\sin^2\!x)}sin2x1⋅1−sin2x1−sin2x+1−sin2x1⋅sin2xsin2x=sin2x(1−sin2x)1−sin2x+sin2x And we have: 1sin2 x(1−sin2 x) = 1sin2 x−sin4 x\displaystyle \text{And we have: }\;\frac{1}{\sin^2\!x(1-\sin^2\!x)} \;=\;\frac{1}{\sin^2\!x - \sin^4\!x}And we have: sin2x(1−sin2x)1=sin2x−sin4x1
Re: Trig Identities Hello, minimopeds!\displaystyle \text{Hello, minimopeds!}Hello, minimopeds! Another approach . . .\displaystyle \text{Another approach . . .}Another approach . . . Show that: 1sin2x+1cos2x = 1sin2 x−sin4 x\displaystyle \boxed{\text{Show that: }\;\frac{1}{\sin^2x} +\frac{1}{\cos^2x} \;=\;\frac{1}{\sin^2\!x-\sin^4\!x}}Show that: sin2x1+cos2x1=sin2x−sin4x1 Click to expand... We have: 1sin2 x+1cos2 x = 1sin2 x+11−sin2 x\displaystyle \text{We have: }\;\frac{1}{\sin^2\!x} + \frac{1}{\cos^2\!x} \;=\; \frac{1}{\sin^2\!x} + \frac{1}{1-\sin^2\!x}We have: sin2x1+cos2x1=sin2x1+1−sin2x1 Get a common denominator:\displaystyle \text{Get a common denominator:}Get a common denominator: . . 1sin2 x⋅1−sin2 x1−sin2 x+11−sin2 x⋅sin2 xsin2 x = 1−sin2 x+sin2 xsin2 x(1−sin2 x)\displaystyle \frac{1}{\sin^2\!x}\cdot\frac{1-\sin^2\!x}{1-\sin^2\!x} + \frac{1}{1-\sin^2\!x}\cdot\frac{\sin^2\!x}{\sin^2\!x} \;=\;\frac{1-\sin^2\!x + \sin^2\!x}{\sin^2\!x(1-\sin^2\!x)}sin2x1⋅1−sin2x1−sin2x+1−sin2x1⋅sin2xsin2x=sin2x(1−sin2x)1−sin2x+sin2x And we have: 1sin2 x(1−sin2 x) = 1sin2 x−sin4 x\displaystyle \text{And we have: }\;\frac{1}{\sin^2\!x(1-\sin^2\!x)} \;=\;\frac{1}{\sin^2\!x - \sin^4\!x}And we have: sin2x(1−sin2x)1=sin2x−sin4x1