Trig Identities: show 1/sin^2+1/cos^2 equals 1/sin^2-sin^4

minimopeds

New member
Joined
May 23, 2009
Messages
1
How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!!
 
Re: Trig Identities

minimopeds said:
How do you show that 1/sin^2+1/cos^2 is equal to 1/sin^2-sin^4. Please Do give me some help!!!

1sin2x+1cos2x=\displaystyle \frac{1}{\sin^2{x}} + \frac{1}{\cos^2{x}} =

cos2xsin2xcos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x}}{\sin^2{x}\cos^2{x}} + \frac{\sin^2{x}}{\sin^2{x}\cos^2{x}} =

cos2x+sin2xsin2xcos2x=\displaystyle \frac{\cos^2{x} + \sin^2{x}}{\sin^2{x}\cos^2{x}} =

1sin2xcos2x=\displaystyle \frac{1}{\sin^2{x}\cos^2{x}} =

1sin2x(1sin2x)=\displaystyle \frac{1}{\sin^2{x}(1 - \sin^2{x})} =

1sin2xsin4x\displaystyle \frac{1}{\sin^2{x} - \sin^4{x}}
 
Re: Trig Identities

Hello, minimopeds!\displaystyle \text{Hello, minimopeds!}


Another approach . . .\displaystyle \text{Another approach . . .}


Show that:   1sin2x+1cos2x  =  1sin2 ⁣xsin4 ⁣x\displaystyle \boxed{\text{Show that: }\;\frac{1}{\sin^2x} +\frac{1}{\cos^2x} \;=\;\frac{1}{\sin^2\!x-\sin^4\!x}}

We have:   1sin2 ⁣x+1cos2 ⁣x  =  1sin2 ⁣x+11sin2 ⁣x\displaystyle \text{We have: }\;\frac{1}{\sin^2\!x} + \frac{1}{\cos^2\!x} \;=\; \frac{1}{\sin^2\!x} + \frac{1}{1-\sin^2\!x}


Get a common denominator:\displaystyle \text{Get a common denominator:}

. . 1sin2 ⁣x1sin2 ⁣x1sin2 ⁣x+11sin2 ⁣xsin2 ⁣xsin2 ⁣x  =  1sin2 ⁣x+sin2 ⁣xsin2 ⁣x(1sin2 ⁣x)\displaystyle \frac{1}{\sin^2\!x}\cdot\frac{1-\sin^2\!x}{1-\sin^2\!x} + \frac{1}{1-\sin^2\!x}\cdot\frac{\sin^2\!x}{\sin^2\!x} \;=\;\frac{1-\sin^2\!x + \sin^2\!x}{\sin^2\!x(1-\sin^2\!x)}


And we have:   1sin2 ⁣x(1sin2 ⁣x)  =  1sin2 ⁣xsin4 ⁣x\displaystyle \text{And we have: }\;\frac{1}{\sin^2\!x(1-\sin^2\!x)} \;=\;\frac{1}{\sin^2\!x - \sin^4\!x}



 
Top