Hello, jordan83!
I <u>think</u> I know what you meant . . . but
please learn to use parentheses!
\(\displaystyle \L\frac{\sin\theta\,+\,\cos\theta}{\cos\theta}\,-\,\frac{\sin\theta\,-\,\cos\theta}{\sin\theta}\;=\;\sec\theta\cdot\csc\theta\)
On the left side, get a common denominator:
. \(\displaystyle \L\frac{\sin\theta}{\sin\theta}\cdot\frac{\sin\theta\,+\,\cos\theta}{\cos\theta}\,-\,\frac{\cos\theta}{\cos\theta}\cdot\frac{\sin\theta\,-\,\cos\theta}{\sin\theta}\)
. . \(\displaystyle \L=\;\frac{\sin\theta\cdot(\sin\theta\,+\,\cos\theta)\,-\,\cos\theta\cdot(\sin\theta\,-\,\cos\theta)}{\cos\theta\cdot\sin\theta}\;=\;\frac{\sin^2\theta\,+\,\sin\theta\cdot\cos\theta\,-\,\sin\theta\cdot\cos\theta\,+\,\cos^2\theta}{\cos\theta\cdot\sin\theta}\)
. . \(\displaystyle \L=\;\frac{\sin^2\theta\,+\,\cos^2\theta}{\cos\theta\cdot\sin\theta}\;=\;\frac{1}{\cos\theta\cdot\sin\theta}\;=\;\sec\theta\cdot\csc\theta\)