Where \(\displaystyle a = 9\) and \(\displaystyle x = a\sin\theta\)
Formula: \(\displaystyle \sqrt{a^{2} - x^{2}}\)
\(\displaystyle \int \dfrac{1}{9 - x^{2}} dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9 - 9\sin^{2}\theta }}dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9(1 - \sin^{2}\theta)}}dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9(\cos^{2}\theta)}}dx\)
\(\displaystyle \int \dfrac{1}{3\cos\theta}dx\)
Using differentiation:
\(\displaystyle u = 3\sin\theta\)
\(\displaystyle du = 3\cos\theta\)
\(\displaystyle \int \dfrac{1}{3\cos\theta}(3\cos\theta)dx\)
\(\displaystyle \int \dfrac{3\cos\theta}{3\cos\theta} dx\)
\(\displaystyle \int 1 dx = \theta + C\)
Does this look right? Am I using the right chain of thought? But the next step would be to find \(\displaystyle \theta\) cause we can't have this final answer.
Formula: \(\displaystyle \sqrt{a^{2} - x^{2}}\)
\(\displaystyle \int \dfrac{1}{9 - x^{2}} dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9 - 9\sin^{2}\theta }}dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9(1 - \sin^{2}\theta)}}dx\)
\(\displaystyle \int \dfrac{1}{\sqrt{9(\cos^{2}\theta)}}dx\)
\(\displaystyle \int \dfrac{1}{3\cos\theta}dx\)
Using differentiation:
\(\displaystyle u = 3\sin\theta\)
\(\displaystyle du = 3\cos\theta\)
\(\displaystyle \int \dfrac{1}{3\cos\theta}(3\cos\theta)dx\)
\(\displaystyle \int \dfrac{3\cos\theta}{3\cos\theta} dx\)
\(\displaystyle \int 1 dx = \theta + C\)
Last edited: