Trig Chain Rule-done then simply

shooterman

Junior Member
Joined
Aug 20, 2009
Messages
57
. . . . . .(x2)4(2x)+(x2)(4(x2)3)\displaystyle (x-2)^4(2x)+(x^2)(4(x-2)^3) This is the derivative I solved for.The book gives a answer I guess is simpled so.....

. . . . . .2x(x2)4+4x2(x2)3\displaystyle 2x(x-2)^4+4x^2(x-2)^3 Then I got stuck on how to make it look like the answer in the book which is...

. . . . . .2x(x2)3(3x2)\displaystyle 2x(x-2)^3(3x-2)
 
From your result, they just factored out 2x(x2)3\displaystyle 2x(x-2)^{3}

2x(x2)3((x2)+2x)\displaystyle 2x(x-2)^{3}((x-2)+2x)

2x(x2)3(3x2)\displaystyle 2x(x-2)^{3}(3x-2)
 
Top