Tricky?

BigGlenntheHeavy

Senior Member
Joined
Mar 8, 2009
Messages
1,577
Evaluate csc(x)dx, now if you look in the front of your calculus book,\displaystyle Evaluate \ \int csc(x)dx, \ now \ if \ you \ look \ in \ the \ front \ of \ your \ calculus \ book,

it tells you that csc(x)dx = lncsc(x)+cot(x) + C.\displaystyle it \ tells \ you \ that \ \int csc(x)dx \ = \ -ln|csc(x)+cot(x)| \ + \ C.

But how did they derive this formula? Now, I will show you one way, perhaps\displaystyle But \ how \ did \ they \ derive \ this \ formula? \ Now, \ I \ will \ show \ you \ one \ way, \ perhaps

you have another?\displaystyle you \ have \ another?

csc(x)dx = dxsin(x). Now let u = sin(x)1+cos(x) = tan(x/2),      sin(x) = 2u1+u2\displaystyle \int csc(x)dx \ = \ \int\frac{dx}{sin(x)}. \ Now \ let \ u \ = \ \frac{sin(x)}{1+cos(x)} \ = \ tan(x/2), \ \implies \ sin(x) \ = \ \frac{2u}{1+u^2}

and dx = 2du1+u2.\displaystyle and \ dx \ = \ \frac{2du}{1+u^2}.

Ergo, dxsin(x) = 2du/(1+u2)2u/(1+u2) = duu = lnu+C\displaystyle Ergo, \ \int\frac{dx}{sin(x)} \ = \ \int\frac{2du/(1+u^2)}{2u/(1+u^2)} \ = \ \int\frac{du}{u} \ = \ ln|u|+C

= lnsin(x)1+cos(x)+C = ln1+cos(x)sin(x)+C\displaystyle = \ ln\bigg|\frac{sin(x)}{1+cos(x)}\bigg|+C \ = \ -ln\bigg|\frac{1+cos(x)}{sin(x)}\bigg|+C

= ln1sin(x)+cos(x)sin(x)+C = lncsc(x)+cot(x)+C, QED.\displaystyle = \ -ln\bigg|\frac{1}{sin(x)}+\frac{cos(x)}{sin(x)}\bigg|+C \ = \ -ln|csc(x)+cot(x)|+C, \ QED.
 
Now the standard way to integrate csc(x)dx is:\displaystyle Now \ the \ standard \ way \ to \ integrate \ \int csc(x)dx \ is:

csc(x)[csc(x)+cot(x)csc(x)+cot(x)]dx = csc2(x)+csc(x)cot(x)csc(x)+cot(x)dx.\displaystyle \int csc(x)\bigg[\frac{csc(x)+cot(x)}{csc(x)+cot(x)}\bigg]dx \ = \ \int\frac{csc^2(x)+csc(x)cot(x)}{csc(x)+cot(x)}dx.

Now, if we let u = csc(x)+cot(x), then, du = [csc2(x)+csc(x)cot(x)]dx.\displaystyle Now, \ if \ we \ let \ u \ = \ csc(x)+cot(x), \ then, \ -du \ = \ [csc^2(x)+csc(x)cot(x)]dx.

Hence, we have duu = lnu+C = lncsc(x)+cot(x)+C.\displaystyle Hence, \ we \ have \ -\int\frac{du}{u} \ = \ -ln|u|+C \ = \ -ln|csc(x)+cot(x)| +C.

However to evaluate dx1+sin(x)cos(x), we must use the formula in my\displaystyle However \ to \ evaluate \ \int\frac{dx}{1+sin(x)-cos(x)}, \ we \ must \ use \ the \ formula \ in \ my

above thread.\displaystyle above \ thread.
 
Top