let [MATH]a, b, c[/MATH] be the three sides of the triangle and [MATH]A, B, C,[/MATH] the angles opposite to each side respectively
then, by the law of cosines
[MATH]a^2 = b^2 + c^2 - 2bc \cos A[/MATH]
[MATH]A = \cos^{-1} \left(\frac{a^2 - b^2 - c^2}{-2bc}\right)[/MATH]
and you can do the same for the angles [MATH]B[/MATH] and [MATH]C[/MATH]
[MATH]B = \cos^{-1} \left(\frac{b^2 - a^2 - c^2}{-2ac}\right)[/MATH]
[MATH]C = \cos^{-1} \left(\frac{c^2 - a^2 - b^2}{-2ab}\right)[/MATH]
now, all you have to do is to replace [MATH]a, b, c[/MATH] with [MATH]2, 3, 4[/MATH] respectively
[MATH]-\cancel{Jomo} Joshua[/MATH]