Hello, Kushballo7!
Galactus beat me to it . . . but I'll show you my trigonometric solution.
In \(\displaystyle \Delta ABC,\;D\) lies on \(\displaystyle AB,\;CD\,\perp\,AB,\;|AD|\,=\,|BD|\,=\,4\)cm, and \(\displaystyle |CD|\,=\,5\)cm.
Where should a point \(\displaystyle P\) be chosen on \(\displaystyle CD\) so that \(\displaystyle |PA|\,+\,|PB|\,+\,|PC|\) is a minimum?
Code:
C
- *
: /|\
: / | \
: / | \
: / | \
5 / | \
: / *P \
: / * | * \
: / * θ | * \
- *--------+--------*
A 4 D 4 B
We have isosceles triangle \(\displaystyle ABC\) with altitude \(\displaystyle CD\).
Let: \(\displaystyle \theta\,=\,\angle PAD\)
. . Then: \(\displaystyle PA\,=\,PB\,=\,4\sec\theta\)
. . Also: \(\displaystyle \,PC\:=\:CD\,-\,PD\:=\:5\,-\,4\tan\theta\)
Hence: \(\displaystyle \,S\:=\
A\,+\,PB\,+\,PC\:=\:8\cdot\sec\theta\,+\,5\,-\,4\cdot\tan\theta\)
Differentiate: \(\displaystyle \,\frac{dS}{d\theta}\:=\:8\cdot\sec\theta\cdot\tan\theta\,-\,4\cdot\sec^2\theta\)
And we have: \(\displaystyle \,4\cdot\sec\theta(2\cdot\tan\theta\,-\,\sec\theta)\:=\:0\)
Since \(\displaystyle \,\sec\theta\,\neq\,0\), we have: \(\displaystyle \,2\tan\theta\:=\:\sec\theta\;\;\Rightarrow\;\;2\cdot\frac{\sin\theta}{\cos\theta}\,=\,\frac{1}{\cos\theta}\)
Since \(\displaystyle \,\cos\theta\,\neq\,0\)
*, we have: \(\displaystyle \,2\cdot\sin\theta\,=\,1\;\;\Rightarrow\;\;\sin\theta\,=\,\frac{1}{2}\)
Therefore: \(\displaystyle \:\theta\,=\,\frac{\pi}{6}\,=\,30^o\)
\(\displaystyle P\) must be placed so that: \(\displaystyle \,PD\,=\,4\cdot\tan30^o\,=\:\frac{4}{\sqrt{3}}\:\approx\:2.31\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
*
If \(\displaystyle \cos\theta\,=\,0\), then \(\displaystyle \theta\,=\,90^o\) and \(\displaystyle PA\,\parallel\,CD\).