Triangle Minimization

Kushballo7

New member
Joined
Oct 20, 2005
Messages
17
In triangle ABC, D lies on AB, CD| AB, |AD|=|BD|=4cm, and |CD|=5cm. Where should a point P be chosen on CD so that the sum |PA|+|PB|+|PC| is a minimum.[/i]
 
triangle5ka.gif


Since DC is 5, we can express DP as x and PC as 5-x.

We have two hypoteneuses and 5-x to add up.

Hypoteneuse PB would be sqrt(DP)2+42=sqrtx2+16\displaystyle sqrt{(DP)^{2}+4^{2}}=sqrt{x^{2}+16}

Hypoteneuse PA would be the same thing.

Length PC is 5-x.

So we have 2sqrtx2+16+(5x)\displaystyle 2sqrt{x^{2}+16}+(5-x).

Differentiating using the product rule:

(2)(12(x2+16)12)(2x)1\displaystyle (2)(\frac{1}{2}(x^{2}+16)^{\frac{-1}{2}})(2x)-1

=2xsqrtx2+161\displaystyle =\frac{2x}{sqrt{x^{2}+16}}-1

Set to 0 and solve for x.

2x=sqrtx2+16\displaystyle 2x=sqrt{x^{2}+16}

Square both sides:

4x2=x2+16\displaystyle 4x^{2}=x^{2}+16

3x216=0\displaystyle 3x^{2}-16=0

we get x=4sqrt3\displaystyle x=\frac{4}{sqrt{3}} or 4sqrt3\displaystyle \frac{-4}{sqrt{3}}

Subbing back in we get PB=PA=8sqrt3\displaystyle \frac{8}{sqrt{3}}, since PB and PA are the same we have 16sqrt3=9.24\displaystyle \frac{16}{sqrt{3}}=9.24

5(4sqrt3)=2.69\displaystyle 5-(\frac{4}{sqrt{3}})=2.69

Adding them equals 4sqrt3+5=11.93\displaystyle 4sqrt{3}+5=11.93

Hey, we jive. Something must be right.
 
Hello, Kushballo7!

Galactus beat me to it . . . but I'll show you my trigonometric solution.

In ΔABC,  D\displaystyle \Delta ABC,\;D lies on AB,  CDAB,  AD=BD=4\displaystyle AB,\;CD\,\perp\,AB,\;|AD|\,=\,|BD|\,=\,4cm, and CD=5\displaystyle |CD|\,=\,5cm.

Where should a point P\displaystyle P be chosen on CD\displaystyle CD so that PA+PB+PC\displaystyle |PA|\,+\,|PB|\,+\,|PC| is a minimum?
Code:
               C
    -          *
    :         /|\
    :        / | \
    :       /  |  \
    :      /   |   \
    5     /    |    \
    :    /     *P    \
    :   /   *  |  *   \
    :  / * θ   |     * \
    - *--------+--------*
      A    4   D   4    B
We have isosceles triangle ABC\displaystyle ABC with altitude CD\displaystyle CD.

Let: θ=PAD\displaystyle \theta\,=\,\angle PAD

. . Then: PA=PB=4secθ\displaystyle PA\,=\,PB\,=\,4\sec\theta

. . Also: PC=CDPD=54tanθ\displaystyle \,PC\:=\:CD\,-\,PD\:=\:5\,-\,4\tan\theta

Hence: \(\displaystyle \,S\:=\:pA\,+\,PB\,+\,PC\:=\:8\cdot\sec\theta\,+\,5\,-\,4\cdot\tan\theta\)


Differentiate: dSdθ=8secθtanθ4sec2θ\displaystyle \,\frac{dS}{d\theta}\:=\:8\cdot\sec\theta\cdot\tan\theta\,-\,4\cdot\sec^2\theta

And we have: 4secθ(2tanθsecθ)=0\displaystyle \,4\cdot\sec\theta(2\cdot\tan\theta\,-\,\sec\theta)\:=\:0

Since secθ0\displaystyle \,\sec\theta\,\neq\,0, we have: 2tanθ=secθ        2sinθcosθ=1cosθ\displaystyle \,2\tan\theta\:=\:\sec\theta\;\;\Rightarrow\;\;2\cdot\frac{\sin\theta}{\cos\theta}\,=\,\frac{1}{\cos\theta}

Since cosθ0\displaystyle \,\cos\theta\,\neq\,0 *, we have: 2sinθ=1        sinθ=12\displaystyle \,2\cdot\sin\theta\,=\,1\;\;\Rightarrow\;\;\sin\theta\,=\,\frac{1}{2}


Therefore: θ=π6=30o\displaystyle \:\theta\,=\,\frac{\pi}{6}\,=\,30^o

P\displaystyle P must be placed so that: PD=4tan30o=432.31\displaystyle \,PD\,=\,4\cdot\tan30^o\,=\:\frac{4}{\sqrt{3}}\:\approx\:2.31

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

*
If cosθ=0\displaystyle \cos\theta\,=\,0, then θ=90o\displaystyle \theta\,=\,90^o and PACD\displaystyle PA\,\parallel\,CD.
 
Top