Erik Lehnsherr
New member
- Joined
- Jun 13, 2010
- Messages
- 11
Just need verification.
\(\displaystyle \text{i.\,\,\,\,Use the trapezium rule with intervals of width}\) \(\displaystyle \,0.4\) \(\displaystyle \text{to find an approximate value for}\) \(\displaystyle \,\,\int_0^{1.6} xe^{x^2}\,dx\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx\)
\(\displaystyle h = 0.4\)
\(\displaystyle \begin{vmatrix} x_r & 0 & 0.4 & 0.8 & 1.2 & 1.6 \\y_r & 0 & 0.4694 & 1.517 & 5.065 & 20.70 \end{vmatrix}\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx = \frac{1}{2}\cdot0.4\{2(0.4694+1.517+5.065)+20.70\}\)
\(\displaystyle \approx 6.961\)
\(\displaystyle \text{ii\,\,\,\,Calculate the exact value of}\) \(\displaystyle \int_0^{1.6} xe^{x^2}\,dx\) \(\displaystyle \text{leaving your answer in terms of e.}\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx\)
\(\displaystyle \approx 5.96791\)
\(\displaystyle \text{i.\,\,\,\,Use the trapezium rule with intervals of width}\) \(\displaystyle \,0.4\) \(\displaystyle \text{to find an approximate value for}\) \(\displaystyle \,\,\int_0^{1.6} xe^{x^2}\,dx\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx\)
\(\displaystyle h = 0.4\)
\(\displaystyle \begin{vmatrix} x_r & 0 & 0.4 & 0.8 & 1.2 & 1.6 \\y_r & 0 & 0.4694 & 1.517 & 5.065 & 20.70 \end{vmatrix}\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx = \frac{1}{2}\cdot0.4\{2(0.4694+1.517+5.065)+20.70\}\)
\(\displaystyle \approx 6.961\)
\(\displaystyle \text{ii\,\,\,\,Calculate the exact value of}\) \(\displaystyle \int_0^{1.6} xe^{x^2}\,dx\) \(\displaystyle \text{leaving your answer in terms of e.}\)
\(\displaystyle \int_0^{1.6} xe^{x^2} dx\)
\(\displaystyle \approx 5.96791\)