Trapezoidal Rule (Verification)

Erik Lehnsherr

New member
Joined
Jun 13, 2010
Messages
11
Just need verification.

i.    Use the trapezium rule with intervals of width\displaystyle \text{i.\,\,\,\,Use the trapezium rule with intervals of width} 0.4\displaystyle \,0.4 to find an approximate value for\displaystyle \text{to find an approximate value for}   01.6xex2dx\displaystyle \,\,\int_0^{1.6} xe^{x^2}\,dx

01.6xex2dx\displaystyle \int_0^{1.6} xe^{x^2} dx

h=0.4\displaystyle h = 0.4

xr00.40.81.21.6yr00.46941.5175.06520.70\displaystyle \begin{vmatrix} x_r & 0 & 0.4 & 0.8 & 1.2 & 1.6 \\y_r & 0 & 0.4694 & 1.517 & 5.065 & 20.70 \end{vmatrix}

01.6xex2dx=120.4{2(0.4694+1.517+5.065)+20.70}\displaystyle \int_0^{1.6} xe^{x^2} dx = \frac{1}{2}\cdot0.4\{2(0.4694+1.517+5.065)+20.70\}

6.961\displaystyle \approx 6.961

ii    Calculate the exact value of\displaystyle \text{ii\,\,\,\,Calculate the exact value of} 01.6xex2dx\displaystyle \int_0^{1.6} xe^{x^2}\,dx leaving your answer in terms of e.\displaystyle \text{leaving your answer in terms of e.}

01.6xex2dx\displaystyle \int_0^{1.6} xe^{x^2} dx

5.96791\displaystyle \approx 5.96791
 
01.6xex2dx, let u = x2      du = 2xdx      du2 = xdx.\displaystyle \int_{0}^{1.6} x e^{x^{2}}dx, \ let \ u \ = \ x^2 \ \implies \ du \ = \ 2xdx \ \implies \ \frac{du}{2} \ = \ xdx.

Hence, we have: 1202.56eudu = eu2]02.56 = e2.5612.\displaystyle Hence, \ we \ have: \ \frac{1}{2}\int_{0}^{2.56} e^udu \ = \ \frac{e^u}{2}\bigg]_{0}^{2.56} \ = \ \frac{e^{2.56}-1}{2}.
 
Top