mathstresser
Junior Member
- Joined
- Jan 28, 2006
- Messages
- 134
Give a geometric description of the matrix transformation f: R^2 --> R^2 defined by f(u)= Au for the given matrix A.
a) \(\displaystyle \L A\, =\, \left[\, \begin{array}{rr}-1&0\\0&1\end{array}\, \right]\)
b) \(\displaystyle \L A\, =\, \left[\, \begin{array}{rr}0&-1\\1&0\end{array}\, \right]\)
I know that geometric matrices are:
. . .\(\displaystyle \L \left[\, \begin{array}{ccc}a&b&c\\b&d&e\\c&e&f\end{array}\, \right]\)
But that's all I know.
____________________________
Edited by stapel -- Reason for edit: formatting matrices.
a) \(\displaystyle \L A\, =\, \left[\, \begin{array}{rr}-1&0\\0&1\end{array}\, \right]\)
b) \(\displaystyle \L A\, =\, \left[\, \begin{array}{rr}0&-1\\1&0\end{array}\, \right]\)
I know that geometric matrices are:
. . .\(\displaystyle \L \left[\, \begin{array}{ccc}a&b&c\\b&d&e\\c&e&f\end{array}\, \right]\)
But that's all I know.
____________________________
Edited by stapel -- Reason for edit: formatting matrices.