Question:
For [MATH]A,B\subseteq\mathbb{R}[/MATH] we define [MATH]A{\le}B:\iff[/MATH] [MATH]A[/MATH] is a subset of [MATH]B[/MATH]
Show that '[MATH]\le[/MATH]' is not a total order on [MATH]\mathcal{P}(\mathbb{R})[/MATH].
My attempt: So I went down the list of things needed for something to be total order: transitivity, anti-symmetry and totality and noticed totality didn't work
Let [MATH]A=\mathbb{Q},~ B=\mathbb{R}{\setminus}\mathbb{Q}[/MATH]Then [MATH]A{\nsubseteq}B~{\land}~B{\nsubseteq}A{\iff}A{\nleq}B~{\land}~B{\nleq}A[/MATH]Thus '[MATH]\le[/MATH]' is not a total order on [MATH]\mathcal{P}(\mathbb{R})[/MATH].
Notation:
Thanks, Ethan
For [MATH]A,B\subseteq\mathbb{R}[/MATH] we define [MATH]A{\le}B:\iff[/MATH] [MATH]A[/MATH] is a subset of [MATH]B[/MATH]
Show that '[MATH]\le[/MATH]' is not a total order on [MATH]\mathcal{P}(\mathbb{R})[/MATH].
My attempt: So I went down the list of things needed for something to be total order: transitivity, anti-symmetry and totality and noticed totality didn't work
Let [MATH]A=\mathbb{Q},~ B=\mathbb{R}{\setminus}\mathbb{Q}[/MATH]Then [MATH]A{\nsubseteq}B~{\land}~B{\nsubseteq}A{\iff}A{\nleq}B~{\land}~B{\nleq}A[/MATH]Thus '[MATH]\le[/MATH]' is not a total order on [MATH]\mathcal{P}(\mathbb{R})[/MATH].
Notation:
- [MATH]\iff[/MATH] is used as equivalence symbol since [MATH]\leftrightarrow[/MATH] doesn't look right (no double line)
- [MATH]\mathcal{P}[/MATH] is used as power set symbol
Thanks, Ethan