Three impedances are connected in parallel. Z1=2-j, Z2=j+2, Z3=-2j. Find the equivalent admittance ?

1/Z1 = 1/\(\displaystyle \sqrt{5}\) * [2 + j]


Good advice, but there's no need for the root in this case...

[math] \frac{1}{Z_1} = \frac{1}{\left(2-j\right)} = \frac{\color{red}{2+j}}{\left(2-j\right)\left(\color{red}{2+j}\right)} = \frac{2+j}{2^2+1}= \frac{2+j}{5} [/math]
 
Good advice, but there's no need for the root in this case...

[math] \frac{1}{Z_1} = \frac{1}{\left(2-j\right)} = \frac{\color{red}{2+j}}{\left(2-j\right)\left(\color{red}{2+j}\right)} = \frac{2+j}{2^2+1}= \frac{2+j}{5} [/math]
Oooops ... going to the corner for 5 minutes with Jomo (permanent resident) and the spider.
 
Top