maeveoneill said:
(a) A(2,4,2) B(3,7,-2) C(1,3,3)
i got
|AB| = 5.099
|AC|= 1.73
|BC|= 6.708
Is round-off error perhaps causing some problems...? :shock:
Try doing the calculations exactly, instead of in your calculator:
. . . . .|AB| = sqrt[(2 - 3)[sup:227j0n0n]2[/sup:227j0n0n] + (4 - 7)[sup:227j0n0n]2[/sup:227j0n0n] + (2 - (-2))[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[1 + 9 + 16] = sqrt[26]
. . . . .|AC| = sqrt[(2 - 1)[sup:227j0n0n]2[/sup:227j0n0n] + (4 - 3)[sup:227j0n0n]2[/sup:227j0n0n] + (2 - 3)[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[1 + 1 + 1] = sqrt[3]
. . . . .|BC| = sqrt[(3 - 1)[sup:227j0n0n]2[/sup:227j0n0n] + (7 - 3)[sup:227j0n0n]2[/sup:227j0n0n] + (-2 - 3)[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[4 + 16 + 25] = sqrt[45]
It's hard to "see" anything from this. For sqrt[26] + sqrt[3] to equal sqrt[45], their squares would have to be equal as well. But:
. . . . .(sqrt[26] + sqrt[3])[sup:227j0n0n]2[/sup:227j0n0n] = 26 + 2sqrt[78] + 9 = 35 + 2sqrt[78]
. . . . .(sqrt[45])[sup:227j0n0n]2[/sup:227j0n0n] = 45
Since sqrt[78] does not equal 5, then these cannot be equal, and the points cannot be collinear.
On the other hand:
maeveoneill said:
(b) D(0,-5,5) E(1,-2,4) F (3,4,2)
. . . . .|DE| = sqrt[(0 - 1)[sup:227j0n0n]2[/sup:227j0n0n] + (-5 - (-2))[sup:227j0n0n]2[/sup:227j0n0n] + (5 - 4)[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[1 + 9 + 1] = sqrt[11]
. . . . .|DF| = sqrt[(0 - 3)[sup:227j0n0n]2[/sup:227j0n0n] + (-5 - 4)[sup:227j0n0n]2[/sup:227j0n0n] + (5 - 2)[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[9 + 81 + 9] = sqrt[99] = 3 sqrt[11]
. . . . .|EF| = sqrt[(1 - 3)[sup:227j0n0n]2[/sup:227j0n0n] + (-2 - 4)[sup:227j0n0n]2[/sup:227j0n0n] + (4 - 2)[sup:227j0n0n]2[/sup:227j0n0n]] = sqrt[4 + 36 + 4] = sqrt[44] = 2 sqrt[11]
Since 1 sqrt[11] + 2 sqrt[11] equals 3 sqrt[11], these points are indeed collinear.
Round-off error can be a killer! :wink:
Eliz.