Lim (x + tan x) / (sin x) x>0 any suggestions[/u]
D dsdlewis4 New member Joined Jan 4, 2006 Messages 1 Jan 4, 2006 #1 Lim (x + tan x) / (sin x) x>0 any suggestions[/u]
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jan 4, 2006 #2 Hello, dsdlewis4! You're expected to know that: \(\displaystyle \:\lim_{x\to0}\left(\frac{\sin x}{x}\right)\:=\:1\) \(\displaystyle \lim_{x\to0}\left(\frac{x\,+\,\tan x}{\sin x}\right)\) Click to expand... We have: \(\displaystyle \:\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{\tan x}{\sin x}\right)\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{1}{\cos x}\right)\) \(\displaystyle \;\;\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\right)\:+\:\lim_{x\to0}\left(\frac{1}{\cos x}\right)\) \(\displaystyle \;\;\;=\;1\,+\,\frac{1}{1}\;=\;2\)
Hello, dsdlewis4! You're expected to know that: \(\displaystyle \:\lim_{x\to0}\left(\frac{\sin x}{x}\right)\:=\:1\) \(\displaystyle \lim_{x\to0}\left(\frac{x\,+\,\tan x}{\sin x}\right)\) Click to expand... We have: \(\displaystyle \:\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{\tan x}{\sin x}\right)\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{1}{\cos x}\right)\) \(\displaystyle \;\;\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\right)\:+\:\lim_{x\to0}\left(\frac{1}{\cos x}\right)\) \(\displaystyle \;\;\;=\;1\,+\,\frac{1}{1}\;=\;2\)
D Daniel_Feldman Full Member Joined Sep 30, 2005 Messages 252 Jan 4, 2006 #4 Let's break it up. (x+tanx)/sinx=(x/sinx)+(tanx/sinx) From the squeeze theorem: Lim (sinx/x)=1 x--->0 So Lim (sinx/x)=1/1=1 (note the reciprocals x/sinx and sinx/x). x--->0 Now, tanx/sinx=(sinx/cosx)/sinx=1/cosx Lim (1/cosx)=1/cos(0)=1 x--->0 So Lim (x + tan x) / (sin x) =1+1=2 x>0 Edit:Soroban beats me!
Let's break it up. (x+tanx)/sinx=(x/sinx)+(tanx/sinx) From the squeeze theorem: Lim (sinx/x)=1 x--->0 So Lim (sinx/x)=1/1=1 (note the reciprocals x/sinx and sinx/x). x--->0 Now, tanx/sinx=(sinx/cosx)/sinx=1/cosx Lim (1/cosx)=1/cos(0)=1 x--->0 So Lim (x + tan x) / (sin x) =1+1=2 x>0 Edit:Soroban beats me!