Lim (x + tan x) / (sin x) x>0 any suggestions[/u]
D dsdlewis4 New member Joined Jan 4, 2006 Messages 1 Jan 4, 2006 #1 Lim (x + tan x) / (sin x) x>0 any suggestions[/u]
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jan 4, 2006 #2 Hello, dsdlewis4! You're expected to know that: limx→0(sinxx) = 1\displaystyle \:\lim_{x\to0}\left(\frac{\sin x}{x}\right)\:=\:1x→0lim(xsinx)=1 limx→0(x + tanxsinx)\displaystyle \lim_{x\to0}\left(\frac{x\,+\,\tan x}{\sin x}\right)x→0lim(sinxx+tanx) Click to expand... We have: limx→0(xsinx + tanxsinx) = limx→0(xsinx + 1cosx)\displaystyle \:\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{\tan x}{\sin x}\right)\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{1}{\cos x}\right)x→0lim(sinxx+sinxtanx)=x→0lim(sinxx+cosx1) = limx→0(xsinx) + limx→0(1cosx)\displaystyle \;\;\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\right)\:+\:\lim_{x\to0}\left(\frac{1}{\cos x}\right)=x→0lim(sinxx)+x→0lim(cosx1) = 1 + 11 = 2\displaystyle \;\;\;=\;1\,+\,\frac{1}{1}\;=\;2=1+11=2
Hello, dsdlewis4! You're expected to know that: limx→0(sinxx) = 1\displaystyle \:\lim_{x\to0}\left(\frac{\sin x}{x}\right)\:=\:1x→0lim(xsinx)=1 limx→0(x + tanxsinx)\displaystyle \lim_{x\to0}\left(\frac{x\,+\,\tan x}{\sin x}\right)x→0lim(sinxx+tanx) Click to expand... We have: limx→0(xsinx + tanxsinx) = limx→0(xsinx + 1cosx)\displaystyle \:\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{\tan x}{\sin x}\right)\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\,+\,\frac{1}{\cos x}\right)x→0lim(sinxx+sinxtanx)=x→0lim(sinxx+cosx1) = limx→0(xsinx) + limx→0(1cosx)\displaystyle \;\;\;=\;\lim_{x\to0}\left(\frac{x}{\sin x}\right)\:+\:\lim_{x\to0}\left(\frac{1}{\cos x}\right)=x→0lim(sinxx)+x→0lim(cosx1) = 1 + 11 = 2\displaystyle \;\;\;=\;1\,+\,\frac{1}{1}\;=\;2=1+11=2
D Daniel_Feldman Full Member Joined Sep 30, 2005 Messages 252 Jan 4, 2006 #4 Let's break it up. (x+tanx)/sinx=(x/sinx)+(tanx/sinx) From the squeeze theorem: Lim (sinx/x)=1 x--->0 So Lim (sinx/x)=1/1=1 (note the reciprocals x/sinx and sinx/x). x--->0 Now, tanx/sinx=(sinx/cosx)/sinx=1/cosx Lim (1/cosx)=1/cos(0)=1 x--->0 So Lim (x + tan x) / (sin x) =1+1=2 x>0 Edit:Soroban beats me!
Let's break it up. (x+tanx)/sinx=(x/sinx)+(tanx/sinx) From the squeeze theorem: Lim (sinx/x)=1 x--->0 So Lim (sinx/x)=1/1=1 (note the reciprocals x/sinx and sinx/x). x--->0 Now, tanx/sinx=(sinx/cosx)/sinx=1/cosx Lim (1/cosx)=1/cos(0)=1 x--->0 So Lim (x + tan x) / (sin x) =1+1=2 x>0 Edit:Soroban beats me!