G
Guest
Guest
show that
\(\displaystyle \L\int_0^{1} x^m(1-x)^ndx=\frac {n}{m+1}\int_0^{1} x^{m+1}(1-x)^{n-1}dx\)
hence show that
\(\displaystyle \L\int_0^{1} x^m(1-x)^ndx=\frac{m!n!}{(m+n+1)!}\)
thanx :?
\(\displaystyle \L\int_0^{1} x^m(1-x)^ndx=\frac {n}{m+1}\int_0^{1} x^{m+1}(1-x)^{n-1}dx\)
hence show that
\(\displaystyle \L\int_0^{1} x^m(1-x)^ndx=\frac{m!n!}{(m+n+1)!}\)
thanx :?