Q'''(1) = 12, but since this is 3rd degree, Q'''(x)=12
\(\displaystyle Q''(x) = 12x + c\)
\(\displaystyle Q''(1)=6,\) so: \(\displaystyle 12 + c = 6, c = -6\)
\(\displaystyle Q''(x) = 12x - 6\)
\(\displaystyle Q'(x) = 6x^2 - 6x + c\)
\(\displaystyle Q'(1) = 3,\) so: \(\displaystyle 0 + c = 3, c = 3\)
\(\displaystyle Q'(x) = 6x^2 - 6x + 3\)
\(\displaystyle Q(x)=2x^3 - 3x^2 + 3x + c\)
\(\displaystyle Q(1) = 1,\) so: \(\displaystyle 2 + c = 1, c=-1\)
\(\displaystyle Q(x) = 2x^3 - 3x^2 + 3x - 1\)