The upper incomplete gamma function is defined as
[MATH]\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} \ e^{-t} \ dt[/MATH]
Now, I want to solve this integral.
[MATH]\int_{1}^{\infty} \frac{1}{x2^x} \ dx = \Gamma (0,\ln(2)) = \int_{\ln 2}^{\infty} t^{-1} \ e^{-t} \ dt = -\gamma - \ln(\ln(2)) - \sum_{k=1}^{\infty} \frac{(-\ln(2))^k}{k(k!)} \approx 0.378671043061088[/MATH]
where [MATH]\gamma[/MATH] is Euler-Mascheroni constant [MATH]\approx 0.5772156649015328606065120900824024310421 [/MATH]
Why the integral gave gamma function [MATH]\Gamma(s,x)[/MATH], the parameters, [MATH]s = 0 [/MATH] and [MATH]x = \ln(2)[/MATH]?
[MATH]\Gamma(s,x) = \int_{x}^{\infty} t^{s-1} \ e^{-t} \ dt[/MATH]
Now, I want to solve this integral.
[MATH]\int_{1}^{\infty} \frac{1}{x2^x} \ dx = \Gamma (0,\ln(2)) = \int_{\ln 2}^{\infty} t^{-1} \ e^{-t} \ dt = -\gamma - \ln(\ln(2)) - \sum_{k=1}^{\infty} \frac{(-\ln(2))^k}{k(k!)} \approx 0.378671043061088[/MATH]
where [MATH]\gamma[/MATH] is Euler-Mascheroni constant [MATH]\approx 0.5772156649015328606065120900824024310421 [/MATH]
Why the integral gave gamma function [MATH]\Gamma(s,x)[/MATH], the parameters, [MATH]s = 0 [/MATH] and [MATH]x = \ln(2)[/MATH]?