Prove: The set [Math]G = [/Math] { [Math] X ∈ R^2 : d(X, 0) ≤ 1[/Math] } is open in [Math]R^2[/Math] .(Here [Math]X = (x, y)[/Math], [Math]0 = (0, 0)[/Math])
Let [Math]y = 0, x = \sqrt{1/2}[/Math] by the distance formula of G [Math]\sqrt{((\sqrt{1/2} - 0) - 0)^2 + ((\sqrt{1/2} - 0) - 0)^2} = \sqrt{1} = 1[/Math]
Thus by the restrictions of G [Math](\sqrt{1/2}, 0) ∈ G[/Math]. Let [Math]a = (\sqrt{1/2}, 0)[/Math].
If G is open, by definition, there exists an [Math]ε > 0[/Math] such that [Math]Bε(a) ∈ G[/Math].
Let [Math]ε >0, r > 0[/Math] and [Math]r < ε[/Math] then [Math](\sqrt{1/2} + r, 0) ∈ Bε(a)[/Math]. Let [Math]b = (\sqrt{1/2} + r, 0)[/Math].
By the distance formula of G:
[Math]\sqrt{(\sqrt{1/2} + r)^2 + (\sqrt{1/2} + r)^2} = \sqrt{1 + 2r^2 + 4\sqrt{1/2}r} = *[/Math].
Since r > 0 then * > 1 by the restrictions of [Math]G, b ∉ G, Bε(a) ∉ G[/Math].
This is a contradiction meaning G is not open in [Math]R^2[/Math].
Let [Math]y = 0, x = \sqrt{1/2}[/Math] by the distance formula of G [Math]\sqrt{((\sqrt{1/2} - 0) - 0)^2 + ((\sqrt{1/2} - 0) - 0)^2} = \sqrt{1} = 1[/Math]
Thus by the restrictions of G [Math](\sqrt{1/2}, 0) ∈ G[/Math]. Let [Math]a = (\sqrt{1/2}, 0)[/Math].
If G is open, by definition, there exists an [Math]ε > 0[/Math] such that [Math]Bε(a) ∈ G[/Math].
Let [Math]ε >0, r > 0[/Math] and [Math]r < ε[/Math] then [Math](\sqrt{1/2} + r, 0) ∈ Bε(a)[/Math]. Let [Math]b = (\sqrt{1/2} + r, 0)[/Math].
By the distance formula of G:
[Math]\sqrt{(\sqrt{1/2} + r)^2 + (\sqrt{1/2} + r)^2} = \sqrt{1 + 2r^2 + 4\sqrt{1/2}r} = *[/Math].
Since r > 0 then * > 1 by the restrictions of [Math]G, b ∉ G, Bε(a) ∉ G[/Math].
This is a contradiction meaning G is not open in [Math]R^2[/Math].
Last edited: