temperature in a hemisphere

logistic_guy

Full Member
Joined
Apr 17, 2024
Messages
648
The steady-state temperature in a hemisphere of radius \(\displaystyle r = c\) is determined from

\(\displaystyle \frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2}\frac{\partial u}{\partial \theta} = 0\)

\(\displaystyle 0 < r < c, \ \ \ \ 0 < \theta < \frac{\pi}{2}\)

\(\displaystyle u\left(r,\frac{\pi}{2}\right) = 0, \ \ \ \ 0 < r < c\)

\(\displaystyle u(c,\theta) = f(\theta), \ \ \ \ 0 < \theta < \frac{\pi}{2}\)

Solve for \(\displaystyle u(r,\theta)\). [Hint: \(\displaystyle P_{n}(0) = 0\) only if \(\displaystyle n\) is odd.]
 
The steady-state temperature in a hemisphere of radius \(\displaystyle r = c\) is determined from

\(\displaystyle \frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2}\frac{\partial u}{\partial \theta} = 0\)

\(\displaystyle 0 < r < c, \ \ \ \ 0 < \theta < \frac{\pi}{2}\)

\(\displaystyle u\left(r,\frac{\pi}{2}\right) = 0, \ \ \ \ 0 < r < c\)

\(\displaystyle u(c,\theta) = f(\theta), \ \ \ \ 0 < \theta < \frac{\pi}{2}\)

Solve for \(\displaystyle u(r,\theta)\). [Hint: \(\displaystyle P_{n}(0) = 0\) only if \(\displaystyle n\) is odd.]

show us your effort/s to solve this problem.
 
show us your effort/s to solve this problem.
👍

Let me try to solve this PDE by separation of variables.

\(\displaystyle u(r,\theta) = R(r) \ \Theta(\theta)\)

\(\displaystyle \Theta\frac{\partial^2 R}{\partial r^2} + \Theta\frac{2}{r}\frac{\partial R}{\partial r} + R\frac{1}{r^2}\frac{\partial^2 \Theta}{\partial \theta^2} + R\frac{\cot \theta}{r^2}\frac{\partial \Theta}{\partial \theta} = 0\)

\(\displaystyle R\frac{1}{r^2}\frac{\partial^2 \Theta}{\partial \theta^2} + R\frac{\cot \theta}{r^2}\frac{\partial \Theta}{\partial \theta} = -\Theta\frac{\partial^2 R}{\partial r^2} - \Theta\frac{2}{r}\frac{\partial R}{\partial r}\)

\(\displaystyle \frac{1}{\Theta}\frac{\partial^2 \Theta}{\partial \theta^2} + \frac{\cot \theta}{\Theta}\frac{\partial \Theta}{\partial \theta} = -r^2\frac{\partial^2 R}{R\partial r^2} - \frac{2r}{R}\frac{\partial R}{\partial r}\)

\(\displaystyle \frac{1}{\Theta}\frac{\partial^2 \Theta}{\partial \theta^2} + \frac{\cot \theta}{\Theta}\frac{\partial \Theta}{\partial \theta} = -r^2\frac{\partial^2 R}{R\partial r^2} - \frac{2r}{R}\frac{\partial R}{\partial r} = -\lambda\)

With this substitution, I will have two equations:

\(\displaystyle \frac{\partial^2 \Theta}{\partial \theta^2} + \cot \theta \frac{\partial \Theta}{\partial \theta} + \lambda \Theta = 0\)

\(\displaystyle r^2\frac{\partial^2 R}{\partial r^2} + 2r\frac{\partial R}{\partial r} - \lambda R = 0\)

I will continue in the next post.
 
Let me work on the first differential equation.

\(\displaystyle \frac{\partial^2 \Theta}{\partial \theta^2} + \cot \theta \frac{\partial \Theta}{\partial \theta} + \lambda \Theta = 0\)

This is an ordinary differential equation, so we can change the partial operator to ordinary.

\(\displaystyle \frac{d^2 \Theta}{d \theta^2} + \cot \theta \frac{d \Theta}{d \theta} + \lambda \Theta = 0\)

At this point, we don't know how to solve this ordinary differential equation☹️so we will try to play around to change its form. May be the new form will be known to solve. We know that \(\displaystyle \cot\theta = \frac{\cos \theta}{\sin \theta}\), so the equation will become:

\(\displaystyle \frac{d^2 \Theta}{d \theta^2} + \frac{\cos \theta}{\sin \theta} \frac{d \Theta}{d \theta} + \lambda \Theta = 0\)

Multiply each term by \(\displaystyle \sin \theta\).

\(\displaystyle \sin \theta\frac{d^2 \Theta}{d \theta^2} + \cos \theta \frac{d \Theta}{d \theta} + \sin \theta \lambda \Theta = 0\)

By the product rule, we can combine the first and the second derivatives together.

\(\displaystyle \frac{d}{d\theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right) + \sin \theta \lambda \Theta = 0\)

Now let us focus on the inside of the brackets. Let \(\displaystyle x = \cos \theta\) and \(\displaystyle v(x) = \Theta(\theta)\).
From the chain rule we get:

\(\displaystyle \sin \theta \frac{d \Theta}{d \theta} = \sin \theta \frac{dv}{d\theta} = \sin \theta \frac{dv}{dx}\frac{dx}{d\theta} = -\sin^2 \theta \frac{dv}{dx}\)

\(\displaystyle = -(1 - \cos^2 \theta)\frac{dv}{dx} = -(1 - x^2)\frac{dv}{dx}\)

This means that:

\(\displaystyle \frac{d}{d\theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right) = \frac{d}{dx}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\frac{dx}{d\theta} = -\sin \theta \frac{d}{dx}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\)

\(\displaystyle = -\sin \theta \frac{d}{dx}\left(-(1 - x^2)\frac{dv}{dx}\right)\)

Back to the ordinary differential equation with this new substitution.

\(\displaystyle -\sin \theta \frac{d}{dx}\left(-(1 - x^2)\frac{dv}{dx}\right) + \sin \theta \lambda v = 0\)

Divide each term by \(\displaystyle \sin \theta\).

\(\displaystyle -\frac{d}{dx}\left(-(1 - x^2)\frac{dv}{dx}\right) + \lambda v = 0\)

Take the derivative of the brackets and simplify.

\(\displaystyle (1 - x^2)\frac{d^2 v}{dx^2} - 2x\frac{dv}{dx} + \lambda v = 0\)

This is just the Legendre's equation😍and it has the solution:
\(\displaystyle v(x) = P_n(x)\) only when \(\displaystyle \lambda = n(n + 1), \ \ n = 0, 1, 2, \cdots \ \ \) in the interval \(\displaystyle -1 < x < 1\).

Then

\(\displaystyle \Theta(\theta) = v(x) = P_n(x) = P_n(\cos \theta)\)

And we have solved the first ordinary differential equation. I will continue in the next post.
 
Last edited:
Let me try to solve the second differential equation.

\(\displaystyle r^2\frac{\partial^2 R}{\partial r^2} + 2r\frac{\partial R}{\partial r} - \lambda R = 0\)

This is also an ordinary differential equation, so we can change the partial operator to ordinary.

\(\displaystyle r^2\frac{d^2R}{dr^2} + 2r\frac{dR}{dr} - \lambda R = 0\)

I will let \(\displaystyle r = e^x \rightarrow x = \ln r\) and I will let \(\displaystyle y(x) = R(r)\).

From the chain rule, we get:

\(\displaystyle \frac{dR}{dr} = \frac{dy}{dr} = \frac{dy}{dx}\frac{dx}{dr} = \frac{dy}{dx}\frac{1}{r} = \frac{dy}{dx}\frac{1}{e^x}\)

\(\displaystyle \frac{d^2R}{dr^2} = \frac{d}{dr}\left(\frac{dR}{dr}\right) = \frac{d}{dr}\left(\frac{dy}{dx}\frac{1}{e^x}\right) = \frac{d}{dx}\left(\frac{dy}{dx}\frac{1}{e^x}\right)\frac{dx}{dr}\)

\(\displaystyle = \frac{d}{dx}\left(\frac{dy}{dx}\frac{1}{e^x}\right)\frac{1}{r} = \frac{d}{dx}\left(\frac{dy}{dx}\frac{1}{e^x}\right)\frac{1}{e^{x}}\)

\(\displaystyle = \left(\frac{d^2y}{dx^2}\frac{1}{e^x} - \frac{dy}{dx}\frac{1}{e^x}\right)\frac{1}{e^x} = \frac{d^2y}{dx^2}\frac{1}{e^{2x}} - \frac{dy}{dx}\frac{1}{e^{2x}}\)

Back to our ordinary differential equation with this new substitution.

\(\displaystyle r^2\left(\frac{d^2y}{dx^2}\frac{1}{e^{2x}} - \frac{dy}{dx}\frac{1}{e^{2x}}\right) + 2r\frac{dy}{dx}\frac{1}{e^x} - \lambda y = 0\)

\(\displaystyle \left(\frac{d^2y}{dx^2} - \frac{dy}{dx}\right) + 2\frac{dy}{dx} - \lambda y = 0\)

\(\displaystyle \frac{d^2y}{dx^2} + \frac{dy}{dx} - \lambda y = 0\)

This is one of the basic differential equations and it has the solution:

\(\displaystyle y(x) = c_1e^{k_1x} + c_2e^{k_2x}\)

where \(\displaystyle k_1 = \frac{-1 + \sqrt{1 + 4\lambda}}{2}\) and \(\displaystyle k_2 = \frac{-1 - \sqrt{1 + 4\lambda}}{2}\)

We already know that \(\displaystyle x = \ln r\) and \(\displaystyle y(x) = R(r)\), so the solution will become:

\(\displaystyle R(r) = c_1r^{k_1} + c_2r^{k_2}\)

We also know that \(\displaystyle \lambda = n(n+1)\), so \(\displaystyle 1 + 4\lambda = 1 + 4n(n + 1) = 4n^2 + 4n + 1 = (2n + 1)(2n + 1) = (2n + 1)^2\)

Therefore,

\(\displaystyle k_1 = \frac{-1 + \sqrt{(2n + 1)^2}}{2} = \frac{-1 + 2n + 1}{2} = n\)

And

\(\displaystyle k_2 = \frac{-1 - \sqrt{(2n + 1)^2}}{2} = \frac{-1 - 2n - 1}{2} = -n - 1\)

And the solution becomes:

\(\displaystyle R(r) = c_1r^{n} + c_2r^{-n - 1} = c_1r^{n} + c_2\frac{1}{r^{n + 1}}\)

We are only interested in bounded solutions. When \(\displaystyle r = 0\), the second term becomes \(\displaystyle \frac{1}{0} = \infty\). So we get rid of this unbounded solution and the final solution is:

\(\displaystyle R(r) = c_1r^{n}\)

Letting \(\displaystyle A = c_1\) and combining the two solutions that we found, we get:

\(\displaystyle u_n(r,\theta) = A_nR_n(r)\Theta_n(\theta) =A_nr^{n}P_n(\cos \theta)\)

I will continue in the next post.
 
If we apply the superposition principle, we get:

\(\displaystyle u(r,\theta) = \sum_{n=0}^{\infty} A_nr^nP_n(\cos \theta)\)

Let us apply the first condition.

\(\displaystyle u\left(r,\frac{\pi}{2}\right) = \sum_{n=0}^{\infty} A_nr^nP_n\left(\cos \frac{\pi}{2}\right) = \sum_{n=0}^{\infty} A_nr^nP_n(0) = 0\)

We know that \(\displaystyle A_n \neq 0, r^n \neq 0\), then it must be \(\displaystyle P_n(0) = 0\)

According to the hint \(\displaystyle P_n(0) = 0\) only when \(\displaystyle n = 1, 3, 5, 7, \cdots\)

Or \(\displaystyle 2n + 1, \ \ n = 0, 1, 2, 3, \cdots\)

Then, the solution becomes:

\(\displaystyle u(r,\theta) = \sum_{n=0}^{\infty} A_{2n + 1}r^{2n + 1}P_{2n + 1}(\cos \theta)\)

Now, the second condition will allow us to find the constant \(\displaystyle A_{2n + 1}\). Let us apply it.

\(\displaystyle u(c, \theta) = f(\theta) = \sum_{n=0}^{\infty} A_{2n + 1}c^{2n + 1}P_{2n + 1}(\cos \theta)\)

I can apply the integral to both sides and apply the orthogonality property for Legendre Polynomials since the infinite series is a Fourier Legendre series. Then, I can obtain the coefficients inside the series.

\(\displaystyle \int_{0}^{\pi} f(\theta) P_{2n + 1}(\cos \theta) \sin \theta \ d\theta = \sum_{n=0}^{\infty} A_{2n + 1}c^{2n + 1}\int_{0}^{\pi} P_{2n + 1}(\cos \theta)P_{2n + 1}(\cos \theta) \sin \theta \ d\theta\)

\(\displaystyle \int_{0}^{\pi} f(\theta) P_{2n + 1}(\cos \theta) \sin \theta \ d\theta = \sum_{n=0}^{\infty} A_{2n + 1}c^{2n + 1}\int_{0}^{\pi} P^2_{2n + 1}(\cos \theta) \sin \theta \ d\theta\)

\(\displaystyle \int_{0}^{\pi} f(\theta) P_{2n + 1}(\cos \theta) \sin \theta \ d\theta = \sum_{n=0}^{\infty} A_{2n + 1}c^{2n + 1}\left(\frac{2}{2(2n + 1) + 1}\right)\)

This gives:

\(\displaystyle A_{2n + 1} = \frac{4n + 3}{2c^{2n + 1}}\int_{0}^{\pi} f(\theta) P_{2n + 1}(\cos \theta) \sin \theta \ d\theta\)

So, the final solution to the problem in the OP is:

\(\displaystyle u(r, \theta) = \sum_{n=0}^{\infty} A_{2n + 1}r^{2n + 1}P_{2n + 1}(\cos \theta)\)

where \(\displaystyle A_{2n + 1}\) as mentioned above.


Definition and properties of Fourier Legendre series are worth to remember.

Definition: The Fourier-Legendre series of a function \(\displaystyle f\) defined on the interval \(\displaystyle (-1, 1)\) is given by

\(\displaystyle f(x) = \sum_{n=0}^{\infty}c_nP_n(x)\)

where \(\displaystyle c_n = \frac{2n + 1}{2}\int_{-1}^{1}f(x)P_n(x) \ dx\)

Orthogonality property:

\(\displaystyle \parallel P_n(x)\parallel^2 = \int_{-1}^{1}P^2_n(x) \ dx = \frac{2}{2n + 1}\)
 
Top