I have solved tons of telescoping series, and it was always easy to recognize the cancellation pattern, but in this one I don't know why it is not obvious.
\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{\infty}\frac{1}{2k} + \frac{1}{k + 2} - \frac{1}{2k + 4} - \frac{1}{k + 1}\)
\(\displaystyle =\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\frac{1}{2k} + \frac{1}{k + 2} - \frac{1}{2k + 4} - \frac{1}{k + 1}\)
\(\displaystyle =\lim_{n\rightarrow \infty}\left(\left[\frac{1}{2} + \frac{1}{3} - \frac{1}{6} - \frac{1}{2}+\right] + \left[\frac{1}{4} + \frac{1}{4} - \frac{1}{8} - \frac{1}{3}\right] + ...... + \frac{1}{2n} + \frac{1}{n + 2} - \frac{1}{2n + 4} - \frac{1}{n + 1}\right)\)
Magically, everything will get cancelled except one term:
\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{k(k+1)(k+2)} =\frac{1}{4}\)
Should I keep adding more terms to see the cancellation pattern? If you have a better way to solve this series, sharpen your pencil, and show us how you will do it.
\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{\infty}\frac{1}{2k} + \frac{1}{k + 2} - \frac{1}{2k + 4} - \frac{1}{k + 1}\)
\(\displaystyle =\lim_{n\rightarrow \infty}\sum_{k=1}^{n}\frac{1}{2k} + \frac{1}{k + 2} - \frac{1}{2k + 4} - \frac{1}{k + 1}\)
\(\displaystyle =\lim_{n\rightarrow \infty}\left(\left[\frac{1}{2} + \frac{1}{3} - \frac{1}{6} - \frac{1}{2}+\right] + \left[\frac{1}{4} + \frac{1}{4} - \frac{1}{8} - \frac{1}{3}\right] + ...... + \frac{1}{2n} + \frac{1}{n + 2} - \frac{1}{2n + 4} - \frac{1}{n + 1}\right)\)
Magically, everything will get cancelled except one term:
\(\displaystyle \sum_{k=1}^{\infty}\frac{1}{k(k+1)(k+2)} =\frac{1}{4}\)
Should I keep adding more terms to see the cancellation pattern? If you have a better way to solve this series, sharpen your pencil, and show us how you will do it.